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Binary trees are commonly used data structures. Several variants of binary search trees

were designed to solve various types of searching problems including geometrical ones as
point location and range search queries. In complexity analysis we usually abstract from
the real implementation and easily derive that the time complexity of traversal from the
root of a balanced tree to any leaf is O(log m), where m is the number of leaves. In this
paper we analyse a new method for memory mapping of a binary tree aiming to improve
spatial locality of data represented by binary trees and thus performance of traversal

algorithms applied on these data structures.

1 Motivation

The basic motivation for this research comes from
binary search trees for computer graphics appli-
cations, where they are used to accelerate ray-
shooting. To solve this problem space subdivision
schemes are used, for survey see e.g. [Watt92].
One space subdivision is an orthogonal binary
space partitioning tree (BS P tree or BSPT in the
following text). It is often referred to as kd-tree in
the context of computational geometry [Berg97].
It was initially developed to solve the hidden sur-
face problem in computer graphics [Fuchs80].

A BSPT is a higher dimensional analogy to
a binary search tree. The BSPT for a set S of
objects in R™ is a binary tree defined as follows.
Each node v in BSPT represents a non—empty
box (rectangular parallelepiped) R, and set of ob-
jects S, that intersects R,. The box associated
with the root node is the smallest box contain-
ing all the objects from S. Each interior node of
BSPT is assigned cutting plane H, that splits R,
into two boxes. Let H; be the positive halfspace

and H_ the negative halfspace bounded by H,.
The boxes associated with the left and the right
child of v are R,NH and R, N H, , respectively.
The left subtree of v is a BSPT for a set of ob-
jects ST = {snN H;|s € S,}, the right subtree
is defined similarly. The leaves of the BSPT are

either occupied by the objects or vacant.

The BSPT is constructed hierarchically step
by step until termination criteria given for leaf are
reached. There are usually two termination crite-
ria. First, maximum depth of BSPT is specified.
Second, a node becomes a leaf if the number of
objects associated with the node is smaller than
a constant. The cutting plane H is for ease of
computing search queries perpendicular to one of
coordinate axes (orthogonal cutting). The exam-

ple of BSPT in R? space is depicted in Fig. 1.

The most important operation carried out
for any BSPT in any application is exhaustive
traversal; for example the traversal in depth—firsi—
search (DFS) order. It occurs when BSPT built
for n-dimensional data is used for point location
and range search queries [Samet90]. Several vari-
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Figure 1: Binary Space Partitioning Tree in ®? space

ants of BSPT are thus extensively used in GIS
and other spatial database systems.

This decade /O efficient algorithms and data
structures for external memory have acquired no-
The design of these
data structures is driven by properties of exter-

ticeable research interest.

nal memory hierarchy. Some achieved results are
surveyed for example in [Chiang95].

In this paper we do not deal with external mem-
ory data structures, but with the memory hier-
archy between the processor and the main mem-
ory including either on—chip cache or second—level
cache. The main difference between this hierar-
chy and external memory one is the size of and the
access time to one data block. Those for external
memory hierarchy are much larger than the ones
between processor cache and the main memory.

Second, techniques for external memory data
developed mostly for
dimensional search problems. For example, well
known B-tree [Cormen90] cannot be used to de-

structures were one-

crease time complexity of the BSPT traversal
for n > 1, since the B—tree cannot represent n—
dimensional data. In this paper we analyse novel
methods to increase spatial locality of data in
cache and thus to decrease the time complexity
of any algorithm that uses BSPT. For the sake
of simplicity we assume traversing BSPT in DFS
order from root to a leaf.

2 Preliminaries

In this section we recall the facts necessary to
understand the concept of BSPT nodes memory
mapping. This includes memory allocation tech-
niques and the structure of the memory hierarchy.

2.1 Memory Allocation

The key idea of this paper is mapping BSPT
nodes to addresses in the main memory. Allo-
cation of dynamic variables is always provided by
a memory allocator. Let us suppose the contigu-
ous block of the unoccupied memory is assigned
to the memory allocator at the beginning. This
is used to assign the addresses within the block
to the variables allocated so the variables do not
overlap. We call this memory block a memory
pool. Since the mapping is crucial for the main
contribution of this paper, we discuss it in detail.

Common solution is to use a general memory al-
locator. Each BS PT node is then represented as a
specially allocated variable. Let St denote the size
of memory to store information in a node. This
is the position and the orientation of the splitting
plane. Let Sp be the size of a pointer. Then the
size required to represent one interior BS PT node
is Sty = St + 2.5p. Use of the general memory
allocator requires to store two additional pointers
with each allocated variable that are used later to
free this variable from memory pool.

In this paper we also use another strategy to al-
locate the BS PT node. We use a special memory



ANALYSIS OF CACHE SENSITIVE REPRESENTATION FOR BINARY SPACE PARTITIONING TREEInformatica 17 page

allocator described in [Stroustrup91] to allocate
variables of the same type and thus of the same
fized size Syy. We use BSPT nodes of fixed size
and dedicate them a special memory pool. During
building up BSPT the nodes are allocated from
the memory pool as from an array in linear order.

2.2 Memory Hierarchy

The time complexity of a traversal algorithm us-
ing BSPT is connected with the hardware used.
Let us recall the organization and the properties
of the memory hierarchy. For analysis we suppose
Harvard architecture with separated caches for in-
structions and data. Let Thsas denote latency of
the main memory (time to read/write one block
of data to/from processor).

The larger the memory and the smaller the ac-
cess time, the higher the cost of the memory. The
instruction/data latency of processors is smaller
than Thaspr. That is why a cache is placed be-
tween the memory and the processor. The cache
is a memory of relatively small size with respect
to the size of the main memory. The cache la-
tency T¢ is smaller than Thsps. This solution is
economically advantageous; it uses temporal and
spatial locality of data exposed by a typical pro-
gram and the average access time can be signifi-
cantly reduced. Data between the cache and the
main memory are transferred in blocks. The size
of the block transferred is referred to as cache line
size Scr,. Typical memory hierarchy is depicted
in Fig. 2.

Size Microprocessor chip Access time
[words] [cycles]
8 K Cache 1 1to 2
A 4
256 K Cache 2 5to 15
32 M
to Main Memo
258 M ry 40 to 100

Figure 2: Typical memory hierarchy

In this paper we use for the analysis only the
one cache placed between processor and the main
memory. We denote the time consumed by op-
erations in terms of cycles. Let Tw denote the
average processing time on a BSPT node to de-
cide whether to follow its left or right descendant.

Typical values for today’s superscalar proces-
sors and typical application are Tysar = 55, T¢c =
4, Tw = 5,5cr, = 128 Bytes for MIPS R8000.
These values are taken from [SGI96]. They are
used further in the paper. Note that for a typical
search algorithm on BSPT holds Tw < T

3 BSPT Representations

As we already stated the BSPT is actually rep-
resented by a binary tree. In general, a bi-
nary tree does not represent a valid instance of
BSPT, since the splitting plane has to intersect
the bounding box associated with the node. This
is one of the reasons why the decomposition in-
duced by BSPT cannot be simply replaced by B-
trees or some hashing scheme commonly used for
one-dimensional search problems. The informa-
tion stored in BSPT node is the orientation and
the position of splitting plane. The axis aligned
bounding box is known explicitly for a root node
only. The axis aligned bounding boxes associated
with interior and leaf nodes are not stored explic-
itly in these nodes, but they can be derived by
traversing down the tree.

Let us recall some terminology concerning bi-
nary trees. The depth of a node A in the tree is
the number of nodes on the path from the root to
the node A. The depth of root node is zero. We
call a binary tree complete if all its leaves are po-
sitioned in the same depth d from the root node
and thus the number of leaves is 2%. An incom-
plete binary tree is the one that is not complete.
Let he define complete height of a binary tree A
as the maximum depth, for which the binary tree
constructed by the nodes of A is complete. The
same definitions hold for BSPT.

The next four subsection gives details of BSPT
representations in the memory. This includes a
usual method to represent BSPT nodes using
general memory allocator. We call this random
representation. The less used method is DFS
order representation. Finally, we describe two
forms of a subiree representation that we designed
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to decrease further the average traversal time on
BSPT tree.

3.1 Random Representation

A common way to store the arbitrary BSPT in
the main memory is to represent each node as a
special variable using general memory allocator.
The representation is depicted in Fig. 3 (a).
This representation requires additional memory
for pointers used by general memory allocator for
each allocated variable, but it is the simplest tech-
nique to implement. The addresses of nodes in the
main memory have no connection with their loca-
tion in the BSPT. Assume that two additional
pointers are needed to allocate the variable. Then
the memory size Mg consumed by random repre-
sentation to store Nyo nodes of BSPT is:

M[gandom _ NNO-(4-5P + 51) (1)

3.2 Depth-First—Search (DFS)
Representation

A DFS representation is implemented by using
the allocator for fixed size variables described in
subsection 2.2. In this representation the nodes
are put subsequently in the memory pool in linear
order, when BSPT is built up in the DFS order,
see Fig. 3 (b). The size of the memory consumed
to represent Nyo nodes of BSPT is:

MSDFS = 17\7]\]0.(2.5}3 + S]) (2)

Then 2.Nyo.Sp of memory taken by pointers
to implement general memory allocator is saved
in comparison with random representation.

3.3 Subtree Representation

The main goal of this paper is the analysis
the representation of BSPT proposed originally
in [Havran97] to reduce the time complexity of
ray—shooting query performed on BSPT. Let us
describe the representation in detail.

We also use allocator for fixed size variables,
but the size of one allocated variable is equal
to cache line size Sg7. The variable is subse-
quently occupied by the nodes organised into sub-
tree. The whole BSPT is then decomposed to
subtrees, see Fig. 3 (c). Once the subtree is read
to the cache, the access time to its nodes is equal
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to cache latency Te. The subtree need not be
complete. We distinguish between two subtree
representations, see Fig. 4.

An ordinary subtree has all nodes of the same
size, with two pointers to its descendants, regard-
less of whether the descendant lies in the subtree
or not.

A compactl sublree has no pointers among the
nodes inside the subtree because their address-
ing is provided explicitly by a traversal program.
The pointers are needed only to point between
the subtres. The leaves in an incomplete subtree
have to be marked in a special variable stored in
each subtree (one bit for each node).

The size of the memory described by both sub-
tree representations is given in the next section.

4 Time Complexity and Cache
Hit Ratio Analysis

In this section we analyse the time complexity of a
DFS order traversal for all the BS PT representa-
tions described in previous section. The theoret-
ical analysis assumes that the BSPT nodes data
stored in the main memory are not loaded into
the cache, i.e., cache hit ratio Cyr = 0.0. Fur-
ther, we suppose that the BS PT is complete and
its height is h;. An incomplete BSPT requires to
compute its average depth A; and substitute it for
hy.

These simplifications enable us to express the
average traversal time T4 on BSPT in DFS order
from its root to a leaf. We compute the T4 for
an example of BSPT of height h; = 23. Further,
we suppose random traversal with the probability
that we turn left in a node is equal to pr, = 0.5.

If some data are already located in the cache
(Cur > 0.0), the analysis can be very difficult or
even infeasible. The interested reader can follow
e.g. [Arnold90]. Since the cache has asynchronous
behaviour, we analysed the case by means of sim-
ulation.

4.1 Random Representation

As we suppose Cgr = 0.0 during the whole
traversal, i.e., the processing time of each BSPT
node is Tasps +Tw. As we know that the number
of nodes along the traversal path from root to the
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Figure 4: Subtree representation: (a) Ordinary (b) Compact

leaf is h;+ 1, we can express the average traversal
time T4 as follows:

Ta= (hi+1).(Tum+ Tw) (3)

For values given above (Taar = 55, Tw = 5,
h; = 23) we obtain T4 = 1392.0 cycles.

4.2 DFS Representation

The DFS representation increases the cache hit
ratio by involuntary reading the descendant nodes
for next traversal step(s) if traversal continues to
the left descendant(s) of the current node. As-
suming the size of the BSPT node is Siy =
St + 2.5p, we derive the average traversal time
T4 as follows:

S
Ta = (u+ 1)-[PL-TMM-SI—N + Tw
oL
S
+Tc.(1 - Sﬂ) + (1= pr) Tuml (4)
or

For Siy =4+ 2.4 = 12 and pr, = 0.5 we obtain
T4 = 859.1 cycles.

4.3 Ordinary Subtree Representation

Assume that S¢p and Sy are given. Let Sgr be
the size of the memory needed for each subtree
used to represent subtree type identification. We
express the size of the memory taken by a com-
plete ordinary subtree of the height h:

M(h)
M(h)

(2" —1).S15 + Sst (5)
Scr

IA

From Eq. 6 we derive the complete height of
the ordinary subtree h¢:

Scr — Sst
Sin

The number of nodes in the incomplete ordi-
nary subtree in the depth d = hg + 1 is then:

he = |1+ loga( +1]  (6)

Scr — (2h0+1 - 1)-SIN — Sst

Sin

I@

The average height of the subtree hy > he for
Nopg > 0 is computed as follows:

Nopr = |
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ha = —1+log, (2" + Nopk) (8)

Finally, the average traversal time of the whole

BSPT of height h; is:

Taar +To.ha

Ti=(h 1) .(T7
w=(hi+1).(Tw + o

) )

The subtrees are placed in the main memory so
they are aligned with the cache lines when read to
the cache. Each subtree corresponds to one cache
line. The size of the unused memory in the cache
line is then:

MOSR

unused

= Scr— (2"M — 1+ Nopk).Sin
—Ssr (10)
For Sy = 12,85s7 = 4, we get hg = 2,
Nopk = 3, ha = 2.46, MO5E = 4, and the
average traversal time T4 = 555.9 cycles.

4.4 Compact Subtree Representation

Let St be the size of the memory to represent the
information in the BSPT node, Sp the memory
taken by one pointer. The size of the memory
consumed by a complete subtree of the height h
is expressed as follows:

M(h) = (2" —1).8;42L.5p
+S9r (11)
M(h) < Scr

The complete height hc of subtree is from
Eq. 12 derived similarly to Eq. 6 as follows:

Scr + 51— Ssr
12

sivse 1 1

In the same way as for the ordinary subtree rep-

resentation we derive the number of nodes Nopx
located in the depth d = hg + 1 in the subtree:

he = -1+

Scr, — 2t (S;+ Sp) 4+ S; — Ssr
Sr+Sp

]
(13)
The unused memory for one subtree in the

cache line can be derived similarly as for ordinary
subtree:

Nopr = |
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CSR

unused

= SOL — (th-l-l - 1 + 17VOD]{).SN
~2.Sp.(Nopk + 2" — Nopr/2)
—Ssr (14)

The average height of the subtree h4 and the
average traversal time T4 are computed using
Eq. 8 and Eq. 9. Given Sp = 4, S = 4, and

Sst = 4 we compute h¢ = 3, Noprg = 0,
h4 = 3.0, Mgifed =0, and T4 = 510.0 cycles.

The he, Nopk, ha as the function of the cache
line size for ordinary and compact subtree repre-
sentations and T4 for all BSPT representations
are depicted in Fig 5.

5 Simulation Results

We implemented a special program simulating the
data transfer in a typical memory hierarchy for
the DFS traversal on a complete BSPT. The
simulation was carried out for the same memory
hierarchy and BSPT properties as in previous
section: Tayym = 53, To = 4, Tw = 5, hy = 23,
Sp = 4 Bytes, St = 4 Bytes, Sg7 = 4 Bytes,
four—way set associative cache with cache line size
Scr, = 27 = 128 Bytes, the size of the cache was
220 Bytes. The cache placement algorithm and
its structure correspond to those found in cur-
rent superscalar processors, e.g., MIPS R8000 or
MIPS R10000 (see [SGI96]).

The theoretical, simulated times, and their ra-
tio are summarised in Table 1. The parameter
Crr is the average cache hit ratio to access a
BSPT node in the cache during traversal. The
average cache hit ratio for the node as the func-
tion of its depth in BSPT is in Table 2.

Note that the compact subtree is for Sg7, = 128
complete, so the cache hit ratio for all the nodes
at the same depth in the BSPT is equal. This
is the reason why C'gp for depth 12, 16, and 20
are quite different from neighbour values, since
these BSPT nodes are often read from the main
memory. The probability that these nodes are
already loaded in the cache is smaller with the
increasing depth.

The average traversal times obtained by sim-
ulation correlate well with those computed theo-
retically. It is obvious that the times obtained by
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Figure 5: The analysis: (A) Average traversal time T4(Scyr) for all BSPT representations, (B)
ha(Scr), (C) Nopr(CL), (D) h¢(CL) for subtree representations; Representation (a) Random (b)

DFS, (c) Ordinary subtree, (d) Compact subtree

the simulation are smaller than these derived the-
oretically, since the theoretical analysis supposes
in each step an initial value of Cgr = 0.0.

6 Conclusion

In a previous paper [Havran97] we showed ex-
perimentally that ordinary subtree representation
can decrease traversal time for ray-shooting us-
ing BSPT by 40% in a ray tracing application.
In this paper we have analysed the time complex-
ity and cache hit ratio of different BSPT repre-
sentations for DFS order traversal in detail. We
have shown the time complexity of traversing of
a BSPT is reduced by organising its inner rep-
resentation which matches better the memory hi-
erarchy. The subtree representation decreases the

traversal time for DF'S order by 62% and increases
hit ratio from 35% to 90% for a given example of
common memory hierarchy. Moreover, proposed
representation decreases the memory required to
store BSPT in the main memory by 57%.

7 Future Work

The presented technique is widely applicable to
other hierarchical data structures as well. Future
work should include research of variants of multi-
dimensional binary trees and hierarchical data
structures in general. Dynamization of these data
structures with regard to cache sensitive represen-
tation is also interesting topic to be researched.
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Representation
Random | DFS | Ordinary subtree | Compact subtree
ta (theoretical) 1392.0 | 859.1 555.9 510.0
t'y (simulated) 987.1 | 629.4 445.6 379.3
ratio=t4/t'y 1.41 | 1.36 1.24 1.34
Crr[%] 35.8 | 69.8 83.5 90.3
Table 1: The times computed theoretically and obtained by the simulation
Depth 0 1 2 3 4 5 6 71 8 9| 10| 11
Crr (Random) | 100 | 100 | 100 | 100 | 97 | 91| 62| 52|39 | 25| 21| 18
Cgr (DFS) | 100 | 100 | 100 | 100 | 100 | 93 | 79| 84 |58 | 56 | 63 | 51
Crr (Ordinary subtree) | 100 | 100 | 100 | 100 | 100 | 100 | 97 | 73|90 | 8 | 53| 79
Crrr (Compact subtree) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 69 | 100 | 100 | 100
Depth | 12| 13| 14| 15| 16| 17| 18| 19|20 | 21| 22| 23
Cpr (Random) | 21 | 19| 19 0 0 0 0 0 0 0 0 0
Car (DFS) | 57 | 59 | 47| 59| 54| 48 | 51| 49|47 | 54| 43| 54
Crr (Ordinary subtree) | 80| 64 | 66| 79| 66| 70| 72| 74|61 | 75| 74| 62
Crrr (Compact subtree) 7 | 100 | 100 | 100 11{ 100 | 100 | 100 | 0 | 100 | 100 | 100

Table 2: The cache hit ratio Cyr[%)] as the function of node depth in BSPT
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