
On the Efficiency of Ray-shooting Acceleration Schemes

László Szirmay-Kalos, Budapest University of Technology�

Vlastimil Havran, Max-Planck-Institut f¨ur Informatiky

Benedek Bal´azs, Budapest University of Technology
László Szécsi, Budapest University of Technology

Abstract

This paper examines the efficiency of different ray-
shooting acceleration schemes, including the uniform
space subdivision, octree and kd-tree. We use simple com-
putational models, which assume that the objects are uni-
formly distributed in space. The efficiency is character-
ized by two measures, including the expected number of
ray-object intersections needed to identify the firstly in-
tersected object, and the expected number of steps on the
space partitioning data structure. We can come to the in-
teresting conclusion that these numbers are constant and
are independent of the number of objects in the scene.
The number of intersections is determined by how well
the cells of the partitioning data structure enclose the ob-
jects. Such analysis helps to understand why kd-tree is
better than octree and uniform space subdivision and pro-
vides hints to improve their implementation.

Keywords: Ray-tracing, uniform subdivision, octree, kd-
tree, performance analysis.

1 Introduction

Ray-shooting is a fundamental operation in ray-casting,
recursive ray-tracing and random walk global illumina-
tion algorithms, thus its efficiency is a critical factor in
developing fast rendering algorithms. In order to solve ray
shooting efficiently, a space partitioning data structure is
built in the preprocessing step. During execution, when
a ray is given, this data structure is queried to determine
those objects for which ray-intersection calculation should
be performed.

According to a generally accepted criterion, a “good”
ray-shooting algorithm runs in sub-linear time after sub-
quadratic preprocessing and uses linear memory space.
Thus instead of implementing the algorithms invented in
computational geometry, computer graphics practitioners
prefer heuristic ray-shooting speed-up techniques, includ-
ing, for example,

� uniform space subdivision (also called regular grids)
[5][1],

�szirmay@iit.bme.hu
yhavran@mpi-sb.mpg.de

� octree [6][1],

� BSP or kd-tree [8],

� ray coherence methods [15][9],

� ray classification [6][1],

� Voronoi diagram based space partitioning [13].

The first three algorithms is particularly important and
popular, therefore we shall concentrate on them.

These algorithms try to minimize ray-object intersec-
tion calculations by building a space partitioning data
structure, which has two purposes. On the one hand, this
data structure can select only those objects that are in the
direction of the ray and can ignore those that are not in
this direction and thus can have no intersection with it.
Of course, this selection cannot be optimal, but we can
be conservative. Thus the data structure usually provides
more objects, including even those for which no intersec-
tion occurs, but we can be sure that the data structure will
report all objects, for which intersection happens. From
another point of view, it means that the space partition se-
lected for a given ray encapsulates the points of object lo-
cations that can be intersected, but is usually larger than
that.

The other main feature of these algorithms is that they
sort the objects along the ray. It means that candidate ob-
jects that are in the ray direction are reported in such an
order that if we find an intersection, then we can stop the
calculations, because all other intersections are surely be-
hind the found one. This objective is also approximately
met in practical situations. In order to control the size of
the data structure, cells in the data structure are often al-
lowed to store more than one objects, for which no sorting
is available. In the subsequent analysis, we shall be opti-
mistic and assume that there are no space limits, and such
ordering can be provided. Having carried out the theoret-
ical analysis, we shall intuitively consider what happens
when the limitations of the memory space should also be
taken into account.

The efficiency of a ray-shooting algorithm depends on
the wellness of this encapsulation and also the speed of
traversing the data structure.

The approach proposed in this paper uses a theoretical,
probabilistic model of the scene, thus in this sense, it cor-
responds to average case complexity analysis. However,



instead of calculating complexity measures, we intend to
provide real numbers that well characterize the algorithms.
The running timeT of a heuristic ray-shooting algorithm
can be expressed in the following form:

T = To +NI � TI +NS � TS;

whereTo is the time needed to find the cell of the start-
ing point of the ray,NI is the number of ray-object in-
tersections needed to find the closest intersection,TI is
the time of a single ray-object intersection calculation,NS

is the number of cells that are visited andTS is the time
needed to step from one cell to the next one. In this paper,
we are going to analyze the number of intersection cal-
culationsNI required to identify the first intersection and
the number of stepsNS on the data structure needed to
find the intersection. Having computed these numbers and
having measured the timesTI , To, andTS on a particular
computer, the running times can be presented in a numeric
form.

In the following sections the previous work is surveyed
first, then a probabilistic scene model is proposed. Using
this model, the expected number of intersections and the
expected number of visited cells are calculated for uniform
space subdivision, octree and kd-tree. Finally, we evaluate
the results and validate them with simulation data.

2 Previous work

The efficiency of the ray-shooting algorithms was first in-
vestigated rigorously in the context of worst-case com-
plexity and it was concluded that in the optimal case loga-
rithmic algorithms can be obtained with at leastO(n4+�

)

storage and preprocessing time [3, 17]. Clearly, such an
algorithm has prohibitive memory and preprocessing time
requirements, thus it is not a surprise that nobody uses
these algorithms in practice. Heuristic ray-shooting algo-
rithms seemed to be better, and their superior performance
has been addressed intuitively and using simple complex-
ity models [7, 2]. Later, M´arton [14, 17] showed theoret-
ically why heuristic ray-shooting acceleration algorithms
perform much better, even if their worst-case complexity
is similar to that of the naive case. This analysis used aver-
age case rather than worst-case complexity measures and
resulted in the statement that heuristic ray-shooting algo-
rithms have constant (uniform subdivision, Voronoi par-
titioning) or at most logarithmic (octree) time complex-
ity. Sbert et al. emphasized the applicability of the results
of integral geometry in such calculations [10]. Shirley et
al. aimed at the computation of the Monte-Carlo radios-
ity algorithm and as a subtask of the problem, analyzed
the uniform subdivision [16, 18]. This approach was too
pessimistic, since it did not take into account that when
an intersection is found, the data-structure traversal can be
stopped, thus resulted inO(n1=3) time complexity. In [8]
a practice oriented efficiency model has been introduced,
which includes the measured properties of the computer

and the scene, and determines even the scalar factor of
the running time, which is missing in all complexity ap-
proaches.

3 Probabilistic scene model

We noted that due to the approximate encapsulation, the
algorithm may try to compute more than one ray-object
intersections until a real intersection is found. These tri-
als will fail until a valid intersection is found. When the
valid intersection is obtained, the search terminates. This
means that the determination of the first intersection re-
quires certain ray-object intersection calculations, whose
number depends on the accuracy of the encapsulation.

In order to consider this problem formally, we will apply
simple theoretical models. Thus the analysis will describe
the majority of the cases. This corresponds to the fact that
the authors of the papers proposing such algorithms usu-
ally intuitively justify why these methods are expected to
run faster for “normal scenes” than the naive implementa-
tion and demonstrate this statement by simulation.

To carry out the average case analysis, the scene model,
i.e. the probability distribution of the possible input con-
figurations must be known. In practical situations, this
probability distribution is not available, therefore it must
be estimated, that is, a model of the configuration space
must be established. Such a model cannot be very compli-
cated in order to allow the calculation of the expectation
of the computation time.

A possible, but also justifiable input configuration
model for ray-shooting is the following [17]:

1. The object space consists of spheres of the same ra-
diusr.

2. The sphere centers are uniformly distributed in space.

Since we are interested in the asymptotic behavior when
the number of objects is really high, uniform distribution
in a finite space would not be feasible. On the other hand,
the boundary of the space would pose problems. Thus in-
stead of dealing with a finite object space, the space should
also be expanded as the number of objects grows to sustain
constant average spatial object density. This is a classical
method in probability theory, and its known result is the
Poisson point process [12, 11]. A Poisson point process
N(A) counts the number of points in subsetsA of S in a
way that

� N(A) follows Poisson distribution of parameter
�V (A) where� is a positive constant called “inten-
sity” andV (A) is the volume ofA, thus the probabil-
ity thatA contains exactlyk points is

PrfN(A) = kg =
(�V (A))

k

k!
e��V (A);

and the expected number of points in volumeV (A)

is �V (A);



� for disjoint A1; A2; : : : ; An sets random variables
N(A1); N(A2); : : : ; N(An) are independent.

The Poisson point process will be the basis of our in-
put configuration model, which works with the following
assumptions:

1. The object space consists of spheres of the same ra-
diusr.

2. The sphere centers are the realizations of a Poisson
point process of intensity�.

Having constructed a model of the configuration space,
we can start the analysis of the candidate algorithms.

4 Calculation of the number of
intersections

candidate space

intersection space

Figure 1: Encapsulation of the intersection space by the
cells of the data-structure in a uniform subdivision scheme

Looking at figure 1 we can see a ray that passes through
certain cells of the space partitioning data-structure. The
collection of those sphere centers where the sphere would
have an intersection with a cell is called thecandidate
space associated with this cell. The union of the candi-
date spaces enclose the visited cells but are greater than
them by the radius of the spheres since a sphere is checked
for intersection even if a small part of it is included by the
cell. Formally, the candidate space is the Minkowski sum
by a sphere of radiusr over the cells that have intersection
with the ray.

Only those spheres of radiusr can have intersection
with the ray, whose centers are in a cylinder of radiusr

around the ray. This cylinder is called theintersection
space (figure 1). More precisely, the intersection space
also includes two half spheres at the bottom and at the top
of the cylinder, but these will be ignored.

As the ray-shooting algorithm traverses the data struc-
ture, it examines each cell that is intersected by the ray.
If the cell is empty, then the algorithm does nothing. If
the cell is not empty, then it contains, at least partially, a
sphere, which is tried to be intersected. This intersection
succeeds if the center of the sphere is inside the intersec-
tion space and fails if it is outside.

fail

success

Figure 2: Probability of success

Note that the algorithm should try to intersect objects
that are in the candidate space, but this intersection will
be successful only if the object is also contained by the
intersection space. The probability of the successs is the
ratio of the projected areas of the intersection space and
the candidate space associated with this cell. In general,
the success probability depends on the size of the cell, and
can thus vary along the ray. As we shall see in the ana-
lyzed algorithms, we can still assume that the non-empty
cells have the same size, thus we shall work with constant
success probability.

From the probability of the successful intersection in
a non-empty cell, the probability that the intersection is
found in the first, second, etc. cells can also be computed.
Assuming statistical independence, the probabilities that
the first, second, third, etc. intersection is the first success-
ful intersection ares, (1�s)s, (1�s)2s, etc., respectively.
This distribution is the geometric distribution and its ex-
pected value is1=s. Consequently, the expected value of
the ray-object intersections for an acceleration scheme is:

E[NI ] =
1

s
:

In order to determine success probabilitys, the intersec-
tion and candidate spaces should be compared in different
ray-shooting acceleration schemes. In the following sub-
sections, the uniform subdivision, the octree and the kd-
tree are examined.

4.1 Number of intersections in the uni-
form subdivision scheme

The projected size of the intersection space is obviously
r2� since only those spheres may intersect the ray, which
are not farther thanr, thus the projection of their center is
inside a circle of radiusr.

For uniform subdivision the cells have the same edge
sizea, thus the volume of center of spheres intersecting
the cell is a cube with rounded corners of edge sizea+2r.
If the ray is parallel to one of the sides, then the projected
size of the candidate space isa2 + 4ar + r2� (left of fig-
ure 3). The other extreme case happens when the ray is
parallel to the diagonal of the cubic cell (right of figure
3), where the projection is a rounded hexagon having areap
3a2+6ar+r2�. The success probability for the uniform

subdivision is then:

r2�p
3a2 + 6ar + r2�

� suniform � r2�

a2 + 4ar + r2�
:



Figure 3: The candidate space from two viewpoints

Thus the average number of intersection calculations is:

1

�

�a
r

�2
+
4

�

a

r
+1 � E[Nuniform

I
] �

p
3

�

�a
r

�2
+
6

�

a

r
+1:

Note that the number of intersections depend on refine-
ment leveld = a=r, which expresses the relative sizes
of the cells and the objects. This is highly intuitive since
the number of intersections should not change when a new
unit is defined for the underlying coordinate system.

Another interesting observation is that the expected
number of intersections is a finite constant even when we
assumed infinitely many spheres. From another point of
view, it means that it does not depend on the number of
objectsn, thus it is in complexity classO(1). This corre-
sponds to the previous results published in [14, 17].

4.2 Analysis of the octree

3-cell
2-cell

1-cell

Figure 4: Octree space partitioning

For octrees, the cells can be bigger that the minimum
cell, which would result in smaller success probability,
which increases the number of intersection computations.
This means that from the point of view of minimizing the
number of calculated intersections, the non-empty cells of
the octree data structure is worth refining until to their min-
imum size. If we use this optimization, the non-empty
cells of the octree will also have similar sizea. Since
the success probability refers only to non-empty cells, this
means that the success probability of octree is the same as

the success probability of the uniform subdivision if the
cells are refined to their minimum size:

1

�

�a
r

�2
+

4

�

a

r
+1 � E[Noctree

I ] �
p
3

�

�a
r

�2
+

6

�
� a
r
+1:

Note that this means that the octree is not better than the
uniform subdivision in terms of the number of calculated
intersections. However, it can save memory and steps from
one cell to the next since the empty cells can be bigger. On
the other hand, the determination of the next cell is more
complex for an octree than for the uniform subdivision,
thus there is no clear winner of this game.

4.3 Analysis of the kd-tree

Figure 5: Kd-tree space partitioning with cutting off the
empty space

Following the same argument we used for octrees, kd-
trees can also be optimized for the number of the calcu-
lated intersections if the empty space is cut off from the
objects. Since in our model all objects have the same
size, this also results in the same size for non-empty cells:
a = 2r. Note that this assumption implicitly involves that
the objects can always be separated. This can be accepted
if the scene is not very dense. It means that the expected
number of spheres close to a give sphere is small (e.g.
�4r3�=3 is small). When calculating the success proba-
bility, we have to take into account that unlike in uniform
subdivision and in octree, where the location of the cell
boundaries was independent of the spheres, in kd-trees the
cell boundaries are set exactly at the extrema of the ob-
jects. It means that the candidate space is the cell itself
and should not be extended by the size of the objects. If
the ray is parallel to one of the sides, then the projected
size of the candidate space isa2. On the other hand, when
the ray is parallel to the diagonal of the cubic cell, the pro-
jected size of the candidate space is a hexagon having area
a2
p
3. Using thea = 2r substitution, the success proba-

bility is
�

4

p
3

� skdtree �
�

4
:

In the case of the kd-tree, the cells enclose the objects thus
we do not have problems with those objects that only par-
tially contained by the cell. This fact together with the



recognition that both the cell and the object are convex
allow the application of a fundamental result of integral
geometry, which states that the conditional probability of
intersection a convex enclosed object, given that it is in-
tersected by the convex cell equals to the relative surface
areas, thus we can also obtain an exact value instead of the
bounds:

skdtree =
4r2�

6a2
=

�

6
:

The expected numbef of intersection calculations is then:

E[Nkdtree

I
] =

6

�
:

5 Calculation of the number of
cell steps

The other fundamental parameter of a heuristic ray-
shooting algorithm is the expected number of cellsNS that
should be visited until a valid intersection is found. In the
following analysis the conditional expected value theorem
will be used. An appropriate condition is the length of the
ray until the first intersection is found. Using its proba-
bility densitypt�(t) as a condition, the expected number
visited cellsNS can be obtained in the following form:

E[NS ] =

1Z

0

E[NS jt� = t] � pt�(t) dt;

wheret� is the length of the ray andpt� is its probability
density.

Since the intersection space is a cylinder if we ignore
the half spheres around the beginning and the end, its to-
tal volume isr2�t. Thus the probability that intersection
occurs beforet is:

Prft� < tg = 1� e��r
2
�t:

Note that this function is the cumulative probability dis-
tribution function oft�. The probability density can be
obtained as its derivative, thus we obtain:

pt�(t) = �r2� � e��r
2
�t:

The expected length of the ray is then:

E[t�] =

1Z

0

t � �r2� � e��r
2
�t dt =

1

�r2�
: (1)

The conditional expectation depends on the examined
acceleration scheme, thus it will be determined separately
for the discussed methods. In order to simplify the anal-
ysis, we shall assume that the ray is parallel to one of the
main directions of the space partitioning scheme. Note
that when the ray is not parallel, then it may intersect
more objects but the length traveled in a single cell also
increases. Thus the results obtained with this assumption
will well approximate the properties of the general case as
well.

5.1 Number of visited cells in a uniform
grid

The analysis of the regular grid is quite simple. Since all
cells have the same edge sizea, the number of cells in-
tersected by at long ray ist=a. The expected number of
visited cells is then:

E[NS ] =

1Z

0

t

a
� �r2� � e��r

2
�t dt =

1

a�r2�
:

Note that this number is also constant even for infinite
number of objects, thus the number of cell steps is also
in O(1). We have to recall that a basic assumption of the
analysis was that a cell may contain at least one object. In
order to guarantee that, the number of cells should be at
least linear in terms of the number of objects.

5.2 Number of visited cells in an octree

Assume that the ray is contained by an octree node of2
3L

of elementary cells of sizea3, thust � 2
L � a.

3-cell
2-cell

1-cell

Figure 6: Octree as a collection of 1-cells, 2-cells, etc.k-
cells

Looking at figure 6, we can recognize that if the octree
is refined to the maximum level, then it will contain23L

number of elementary cells of edge sizea, which corre-
sponds to23(L�1) number of nodes of edge size2a, and
finally a single node of edge size2La. When a node is de-
composed to 8 children, new boundaries are introduced in
the space partitioning data structure. Let us call the bound-
aries introduced on that level which works with nodes of
edge size2ia as thei-boundaries. If the ray is horizon-
tal and the octree is fully refined, then it will intersect one
L-boundary, twoL � 1-boundaries, and2L�1 number of
1-boundaries.

However, the ray should not necessarily intersect all el-
ementary cells and thus all boundaries, since the algorithm
may stop refining the cells at higher levels. A cell is not
decomposed further if it is empty. It also means that an
i-boundary does not exist, and therefore the crossing is
saved, if the embedding node of volume2

3ia is empty. A
cell is empty if there are no sphere centers in the set of



points being not farther thanr from the cell. The volume
of such set is

Vi = (2
ia)3 + 6 � (2ia)2r + 3�(2ia)r2 +

4r3�

3
:

The probability of the event ofV i being empty is

Prfi-boundary is savedg = e��Vi : (2)

The number of visited cells or crossed boundaries equal
to the number of the elementary cells2

L minus the number
of saved and thus not existing boundaries. Let us denote
the indicator function of the event that thejth boundary
does not exist byIj (Ij is 1 if the jth boundary is saved
and 0 if it exists). The number of crossed boundaries is
then:

Noctree

S
= 2

L �
LX
j=1

Ij :

When the expected value is computed, we can take advan-
tage that the expected value of an indicator function equals
to the probability of the event it indicates:

E[Noctree

S
jt� = t] = 2

L �E

2
4 LX
j=1

Ij

3
5 =

2
L �

LX
j=1

Prfjth boundary is savedg:

Considering that a horizontal ray encounters oneL-
boundary, twoL � 1-boundaries, and2L�1 number of 1-
boundaries, and substituting equation 2, we can obtain:

E[NSjt� = t] = 2
L �

0
@1�

LX
j=1

e��Vj

2j

1
A :

The terms of the sum decrease rather quickly, thus we ob-
tain a lower bound for the sum keeping only the first term:

LX
j=1

e��Vj

2j
� e��V1

2
:

On the other hand,Vj is an increasing series, thus we ob-
tain an upper bound if the exponentials of all terms is re-
placed by the first exponential:

LX
j=1

e��Vj

2j
�

LX
j=1

e��V1

2j
� e��V1 :

Using these bounds and substituting2
L
= t=a, we get

the following final result:

t

a
(1� e��V1) � E[Noctree

S
jt� = t] � t

a
(1� e��V1

2
):

The unconditional expected number of visited cells is:

1

a�r2�
(1� e��V1) � E[Noctree

S
] � 1

a�r2�
(1� e��V1

2
):

5.3 Number of visited cells in a kd-tree

Unfortunately, we could not obtain bounds for the ex-
pected number of visited cells in a kd-tree. However, a
rough approximation was possible.

Suppose that we are having a cell of volumeV , which
is further decomposed by the kd-tree method. The con-
struction of kd-trees is controlled by the distribution of the
objects. The subdivision planes are placed at the maxi-
mum or minimum points of objects along a given coordi-
nate axis. It means that if the number of objects isn, then
6n planes are inserted. Note that each subdivision plane
subdivides a cell into two, thus increases the number of
cells by one. Consequently, the number of cells inV will
be6n + 1. Taking advantage that the number of spheres
in a cell follows Poisson distribution, the expected number
of cells inV is the following:

1X
n=0

(6n+ 1) � (�V )
n

n!
e��V = 6�V + 1:

It means that the average volume of a single cell is

V

6�V + 1
� 1

6�

if V is large enough to contain possibly many spheres. The
cells are bricks and the kd-tree building algorithm tries to
form these bricks to be close to the cubical shape. It means
that the edge size of an average cell can be approximated
by 1=(6�)1=3. The number of cells visited by a horizontal
ray is the length of the ray divided by the edge size of the
cells. According to equation 1, the average length of a ray
is 1=(�r2�), thus the average number of visited cells is:

E[Nkdtree

S ] � (6�)1=3

�r2�
:

6 Evaluation and comparison of
the three ray-shooting acceler-
ation schemes

We are already concluded that the expected number of ray-
object intersections and the expected number of visited
cells are finite even for infinite number of objects, thus
both of these functions are inO(1). Recall that the to-
tal time of ray-shooting is characterized by the following
formula

T = To +NI � TI +NS � TS :

The intersection timeTI is constant and is independent of
the particular scheme. For uniform subdivision, the initial
location timeTo and the step timeTS are also constant,
thus this algorithm is inO(1) altogether. For octree and
kd-tree, the initial location requires a search in the data
structure, which is usually started at the root of the tree
and completed by the tree traversal. If there aren number



of objects, such traversal requiresO(log n) time. Stepping
from one onto the next cell is also traced back to location.
The ray is intersected with the boundary of the current cell,
the ray-parameter is increased a little and the cell of the
new point is searched in the data structure. In this caseTS

is also inO(logn). Summarizing, for very large number
of objects, the uniform subdivision seems to be the best
scheme. However, the difference between constant and
logarithmic functions is not too significant if the number
of objects is not extremely high. In such cases the decision
can be made according to the studied variablesNI andNS .

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10

E
[N

I]

d = a/r, refinement level

Expected number of intersections

min of uniform subdivision and octree
max of uniform subdivision and octree

kd tree

Figure 7: Expected number of ray-object intersection cal-
culations

Concerning the expected number of intersection calcu-
lations, the first important observation is that the perfor-
mance of an octree is not better then the performance of
uniform subdivision. In fact, the expected values are the
same if the non-empty octree cells are always refined to the
minimum size. However, if the octree building is stopped
when the cell contains only a single, or a few objects, then
the number of calculated intersections increases. Accord-
ing to the theoretical results, the number of intersections
is the reciprocal of the probability of a successful inter-
section in a non-empty cell. The uniform subdivision and
the octree contain cell boundaries that are static and their
location is independent of the objects. This independence
makes the success probability low. The kd-tree, on the
other hand, places the boundaries around the objects, es-
pecially if the empty space is cut off, thus it can result in
much higher intersection probability. Figure 7 compares
the number of calculated intersections for uniform subdi-
vision (the curve of octree is identical to the curve of uni-
form subdivision) and for kd-tree. Since in our model, the
minimum cell size in kd-tree corresponds tod = 2 re-
finement level, a fair comparison can be made ford > 2

values. Examining the situation at this value, we can see
that the kd-tree needs at least 2–3 times less number of
intersections. Another lesson learned from the analysis is
that it is worth using higher refinement levels if the com-
putation burden of a single intersection is high (note the

quickly increasing function in figure 7). This trick can also
be adapted in kd-trees, when not only the empty space is
cut off, but even objects are cut in pieces in order to make
the bounding more compact.

0

20

40

60

80

100

120

140

0.01 0.1 1

ce
ll 

st
ep

s

expected number of objects in the cell of minimum size

Expected number of visited cells

octree lower bound
octree upper bound

kd-tree
uniform subdivision

Figure 8: Number of visited cells for octree, kd-tree and
uniform subdivision, assuming normal refinement (a=r =

2)

Figure 8 compares the number of visited cells for octree,
kd-tree and for uniform subdivision. The graph has been
plotted as a function of the expected number of sphere cen-
ters in a single cell of the uniform subdivision, i.e. the
horizontal axis is�a3. Note that when the cell size of the
octree is similar to the size of the objects, the octree and
the kd-tree perform similarly.

When carrying out the analysis we made several as-
sumptions on the objects and their distribution, which
poses the question whether or not the obtained results can
be used generally. Such assumptions include that the ob-
jects are similar spheres and the cells are of the same size.
In global illumination algorithms, for instance, the sur-
faces are built of not too long triangles of roughly the same
tessellation level and of different orientations. When the
octree and the kd-tree are built, the check whether a cell
includes a part of a triangle is carried out by examining
whether the cell includes a part of the bounding box of
this triangle. The bounding box, in turn can be well ap-
proximated by a sphere. On the other hand, when the real
ray-triangle intersection is calculated, then instead of the
bounding box (or sphere), the triangle is intersected. The
probability that a ray intersects a triangle given that the
ray intersected its bounding box is about 0.4 for not thin
triangles. This value is independent of the data structure
thus the ratio of the intersection numbers will be similar
to the result obtained with spheres. When absolute data
is needed, we have to multiply the values obtained with
spheres by about 2–3.

We also supposed that the data structure is fine enough
to contain at most one object in each cell. In practice,
more than one objects may share a single cell, when all
objects must be intersected. This corresponds to the sit-



n = 1000, � = 0:05 n = 2000, � = 0:01 n = 100000, � = 0:001

Figure 9: Theoretical test scenes

uation when the cost of a ray-object intersection calcula-
tion is multiplied by the number of objects sharing the cell.
Thus the theoreticalNI parameter can still be used, hav-
ing multipliedTI by the maximum number of objects in a
cell. The last critical assumption regards the uniform dis-
tribution of the objects. This may seem not very realistic
assumption when we look at the scene from a larger per-
spective. However, adaptive space partitioning schemes,
including both the octree and the kd-tree, step over the
empty regions quickly and concentrate on the populated
regions. On this low level, the objects seem to be ran-
domly and uniformly distributed, thus the assumption on
uniform random distribution becomes acceptable.

6.1 Simulation results

In order to validate the theoretical results we took several
scenes and measured the analyzed parameters. When do-
ing so, we could not use infinitely large spaces and in-
finitely many objects, but a finite space of volumeV and a
finite number of objectsn are considered. The theoretical
formulae contain the density of the objects�, which can
be estimated as� = n=V .

First we considered scenes containing uniformly dis-
tributed spheres, which corresponds to the theoretical as-
sumptions. In order to make enough space for spheres,
we set density� and expanded the volume according to
V = n=�. Since we constrained the maximum level of
the octree, it means that the leaf cells in the octree and in
the regular grid have edge sizea = (n=�)1=3=26, since
the maximum level of subdivision was 6. The radius of
spheres isr = 1, thusd = a. The number of objects
and the density were in the ranges [1000, 100000] and in
[0.002, 0.12], respectively, thus the refinement leveld was
in [0.3, 5]. The test scenes are shown in figure 9 and the
measurement results in tables 1–5.

Recall that according to the theoretical results the av-
erage number of intersections should be similar for octree

n �

0.002 0.004 0.01 0.02 0.05 0.12

1000 5.03 5.5 5.9 5.9 5.7 5.5
2000 5.8 6.3 6.6 6.5 6.2 5.8
5000 7.4 7.5 7.4 7.0 6.5 6.0
10000 8.6 8.5 8.0 7.4 6.8 6.2
20000 9.8 9.4 8.5 7.8 7.1 6.4
50000 11.4 10.5 9.0 8.1 7.2 6.6
100000 12.5 11.1 9.3 8.3 7.3 6.7

Table 1: Average number of ray-object intersections per
ray for uniform subdivision

n �

0.002 0.004 0.01 0.02 0.05 0.12

1000 4.2 4.4 4.5 4.4 4.5 4.7
2000 5.0 5.1 5.0 4.8 4.7 4.8
5000 6.4 6.3 5.8 5.5 5.2 5.1
10000 7.6 7.2 6.5 6.0 5.6 5.3
20000 9.3 8.5 7.4 6.7 6.1 5.8
50000 12.2 10.9 9.1 8.1 7.2 6.6
100000 16.2 14.0 11.3 9.7 8.6 7.6

Table 2: Average ray-object intersections per ray for octree

and uniform subdivision, and it is an increasing function of
the refinement level. Due to the(n=�)1=3 characteristics of
the refinement level, we expect the results in the range of
[2, 19], and increasing for larger number of objects and
smaller densities. The results in tables 1 and 2 generally
meet this, but are worse when the objects are large com-
pared with the cells, and better when the objects are small
and are not dense. The explanation of worse numbers for
larger objects is that for inclusion test we used the bound-
ing box of the sphere, which reduced the success prob-
ability. The reason of these numbers being smaller than



n �

0.002 0.004 0.01 0.02 0.05 0.12

1000 2.8 3.0 2.8 2.6 2.8 4.0
2000 3.6 3.4 3.0 2.7 2.4 3.1
5000 4.3 4.0 3.3 2.8 2.5 3.1
10000 4.9 4.5 3.5 2.9 2.6 3.1
20000 5.6 5.0 3.8 3.1 2.8 3.3
50000 6.5 5.4 3.9 3.1 2.7 2.8
100000 7.0 5.7 4.0 3.1 2.7 2.8

Table 3: Average ray-object intersections for kd-tree

expected for small number of rarely distributed objects is
that in this case the ray can have no intersection at all with
a not negligible probability, which is against the assump-
tion of the theoretical analysis that we have infinitely many
objects, and thus all rays intersect an object sooner or later.

For kd-trees, the average intersection number is ex-
pected to be smaller than for octree and uniform subdi-
vision and is independent of density and the number of
objects. Looking at table 3, we can recognize that the val-
ues are indeed close to the theoretically expected value of
2 and are fairly independent of the density, except for large
n and small density values. This case corresponds to the
situation when the objects are extremely small compared
to the total volume covered by the kd-tree. Very small
spaces are not cut off by the tree construction algorithm,
which decreases the success probability and increases the
number of intersections.

n �

0.002 0.004 0.01 0.02 0.05 0.12

1000 30.1 29.2 27.4 24.7 22.3 19.4
2000 35.3 33.5 29.6 26.3 22.7 19.3
5000 44.1 40.1 33.3 27.9 23.1 18.7
10000 50.8 44.3 34.8 28.0 22.6 17.7
20000 56.3 47.3 35.1 27.3 21.4 16.3
50000 62.1 49.0 33.7 25.1 19.1 14.3
100000 61.8 46.4 30.6 22.3 16.8 12.6

Table 4: Average traversal steps per ray for octree

The numbers of visited cells meets out theoretical ex-
pectations stating that the octree and kd-tree behave simi-
larly.

Having carried out the analysis with spheres, we
checked the validity of the results for scenes consisting
of random triangles instead of random spheres. We con-
cluded that when the density of the random triangles have
been set in the range of [10

�4, 3 � 10�4] and the size of
the triangles in the range of [15, 30], then the number of
intersections for a kd-tree remained in the range of [5, 7].
Thus the intersection number is independent of the density
and of the size of the objects as expected by the theoretical

n �

0.002 0.004 0.01 0.02 0.05 0.12

1000 26.2 23.8 21.4 19.8 18.3 17.5
2000 31.4 28.8 25.0 22.1 20.1 18.1
5000 40.5 35.7 29.5 25.3 22.2 19.7
10000 47.3 40.4 32.2 27.3 23.6 20.7
20000 54.7 45.1 34.7 28.9 24.8 21.7
50000 64.0 50.9 37.9 31.1 26.5 22.6
100000 70.6 54.6 39.7 32.4 27.5 23.5

Table 5: Average traversal steps per ray for kd-tree

results.

Scene octree kd-tree

Cornell box 9.1 5
Chickens 10.3 6.3
Kitchen 12.0 6.7

Table 6: Number of intersectionNI for real scenes

Scene octree kd-tree

Cornell box 82 9
Chickens 94 15.7
Kitchen 71 13.2

Table 7: Number of visited cells for real scenes

At the final stage of the validation, realistic scenes have
also been used. To allow some realistic distribution of
rays, we used bi-directional path tracing. Tables 6 and
7 include the numbers of intersections and cells steps for
three scenes shown in figure 10. The tessellation level has
been set in a way that the average size of triangles is com-
parable with the size of an elementary cell of the octree
(this corresponds tod = 2 in figure 7). Note that accord-
ing to the theoretical expectations, the numbers of inter-
sections in an octree are roughly twice the numbers of in-
tersections in a kd-tree. The cell steps, on the other hand,
are similar, as we have anticipated that.

Conclusions

This paper computed the average number of intersections
and visited cells needed to find the firstly intersected ob-
ject in various ray-tracing acceleration schemes, including
uniform subdivision, octree and kd-tree. These numbers
are constant even for infinitely many objects and infinitely
large space. We concluded that due to the adaptive encap-
sulation property of kd-trees, they need significantly less
ray-object intersection calculations. Concerning the num-
ber of visited cells, the octree and the kd-tree have similar
performance if the cell size is comparable to the size of the



Figure 10: Practical test scenes

objects. For rarely populated scenes, both the kd-tree and
the octree are better than the uniform subdivision.

The theoretical analysis used some idealistic assump-
tions thus the results are usually worse in practice. Such
analysis helps to understand the behavior of ray-shooting
acceleration algorithms, and the comparisons of the theo-
retical and measured values can also be used to tune these
data structures. We demonstrated that the currently avail-
able program is not too far from the ideal performance,
but could also find improvement possibilities. Another ap-
plication would be to use the data to find optimal com-
promises for the different phases of ray-shooting. For ex-
ample, the cell size of a uniform subdivision or an octree
affects the preprocessing time, the number of intersections
and the number of cell steps. From the point of view of
the number of intersections, the cell size should be small.
On the other hand, the minimization of the preprocessing
time and the number of cell steps would require large cells.
Knowing the density of the objects and the preprocessing,
intersection and step times, an optimal compromise can be
found between these contradicting criteria.

References

[1] J. Arvo and D. Kirk. A survey of ray tracing acceleration
techniques. In Andrew S. Glassner, editor,An Introduction
to Ray Tracing, pages 201–262. Academic Press, London,
1989.

[2] J. Cleary and G. Wywill. Analysis of an algorithm for fast
ray tracing using uniform space subdivision.The Visual
Computer, 4(2):65–83, 1988.

[3] M. de Berg. Efficient Algorithms for Ray Shooting and
Hidden Surface Removal. PhD thesis, Rijksuniversiteit te
Utrecht, The Nederlands, 1992.

[4] O. Devillers. The macro-regions: an efficient space subdi-
vision structure for ray tracing. InEurographics ’89, pages
27–38, 1989.

[5] A. Fujimoto, T. Takayuki, and I. Kansei. Arts: Accelerated
ray-tracing system.IEEE Computer Graphics and Appli-
cations, 6(4):16–26, 1986.

[6] A. S. Glassner. Space subdivision for fast ray tracing.IEEE
Computer Graphics and Applications, 4(10):15–22, 1984.

[7] A. S. Glassner.An Introduction to Ray Tracing. Academic
Press, London, 1989.

[8] V. Havran. Heuristic Ray Shooting Algorithms. Czech
Technical University, Ph.D. dissertation, 2001.

[9] T. Horváth, P. Márton, G. Risztics, and L. Szirmay-Kalos.
Ray coherence between sphere and a convex polyhedron.
Computer Graphics Forum, 2(2):163–172, 1992.

[10] A. Iones, S Zhukov, A. Krupkin, and M. Sbert. Answering
to “what is the criterion?” questions using integral geom-
etry tools. Technical report, Eurographics 2001, Tutorial
notes, 2001.

[11] S. Karlin and M. T. Taylor. A First Course in Stochastic
Processes. Academic Press, New York, 1975.

[12] J. Lamperti.Stochastic Processes. Springer-Verlag, 1972.

[13] G. Márton. Acceleration of ray tracing via voronoi-
diagrams. In Alan W. Paeth, editor,Graphics Gems V,
pages 268–284. Academic Press, Boston, 1995.

[14] G. Márton.Stochastic Analysis of Ray Tracing Algorithms.
PhD thesis, Department of Process Control, Technical Uni-
versity of Budapest, Budapest, Hungary, 1995.

[15] M. Ohta and M. Maekawa. Ray coherence theorem and
constant time ray tracing algorithm. In T. L. Kunii, edi-
tor, Computer Graphics 1987. Proc. CG International ’87,
pages 303–314, 1987.

[16] P. Shirley. Time complexity of Monte-Carlo radiosity. In
Eurographics ’91, pages 459–466. Elsevier Science Pub-
lishers, 1991.

[17] L. Szirmay-Kalos and G. M´arton. Worst-case versus
average-case complexity of ray-shooting.Journal of Com-
puting, 61(2):103–133, 1998.

[18] B. Walter and P. Shirley. Cost analysis of a monte-carlo ra-
diosity algorithm. Technical report, Program of Computer
Graphics, Cornell University, 1995. Technical report PCG-
95-3.


