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Abstract

We present a series of simple improvements that make
use of temporal and spatial coherence in the scope of hi-
erarchical visibility algorithms. Thehierarchy updating
avoids visibility tests of certain interior nodes of the hi-
erarchy. Thevisibility propagationalgorithm reuses infor-
mation about visibility of neighbouring spatial regions. Fi-
nally, theconservative hierarchy updatingavoids visibil-
ity tests of the hierarchy nodes that are expected to remain
visible. We evaluate the presented methods in the context
of hierarchical visibility culling usingocclusion trees.

Keywords: Coherence, hierarchical algorithms, visibil-
ity, kD–tree.

1 Introduction

Exploiting various types of coherence during image syn-
thesis is one of the main goals of modern computer graph-
ics. In the scope of visibility algorithms at least three types
of coherence can be used: object space, image space, and
temporal. Hierarchical visibility algorithms make some
use of the spatial coherence inherently by utilising a spatial
hierarchy. For densely occluded scenes they may achieve
a great benefit by quickly identifying groups of invisible
objects that need not be considered for rendering.

A typical hierarchical visibility algorithm uses avisibil-
ity test, that classifies a node of the spatial hierarchy as
completely visible, partially visible or invisible depending
on the visibility of the spatial region corresponding to that
node. The visibility test is applied recursively starting at
the root node. As soon as a node is found completely vis-
ible or invisible, the current branch of the traversal can be
terminated, since visibility of all nodes in the current sub-
tree is imposed by the visibility of the current node. In
this paper we do not focus on the amount of image space
or temporal coherence, that may be exploited by the visi-
bility test itself. Instead we suggest a more general frame-
work that is rather independent of the particular visibility
algorithm.
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Traditional hierarchical visibility algorithms traverse
the spatial hierarchy starting at the root node. Firstly,
we propose a method, that saves up to half of the visi-
bility tests by skipping certain interior nodes of the hi-
erarchy (assuming the spatial hierarchy corresponds to a
binary tree). The skipping is guided by visibility classi-
fications obtained during the previous invokation of the
visibility algorithm. Secondly, we describe an algorithm
that increases the amount of spatial coherence exploited.
It reuses visibility classifications of hierarchy nodes al-
ready processed in the current pass of the algorithm. The
nodes are processed in front–to–back order and the algo-
rithm tries to determine visibility of the region correspond-
ing to the current node by combining visibility states of
neighbouring regions. If it fails, the usual visibility test is
applied. Finally, we propose a conservative method, that
aims to avoid repeated visibility tests of nodes that proba-
bly remain visible.

2 Related Work

Some visibility algorithms exploit temporal coherence in
a specialised way, that reflects the principles of each such
algorithm. Greene et al. [5] uses the set of visible ob-
jects from one frame to initialise thez–pyramidin the next
frame and so reduces “overdraw” of thehierarchical z–
buffer. Coorg and Teller [2] present a visibility algorithm
that usesrelevant planeswhich form a subset of visual
events. They restrict the hierarchy traversal to nodes cor-
responding to planes that were crossed between successive
viewpoint positions. Another method [3] of Coorg and
Teller exploits temporal coherence by caching occlusion
relationships.

Chrysanthou and Slater have proposed a probabilistic
scheme for view–frustum culling [11]. They partition ob-
jects into groups, which are sampled according to their
distance from the view–frustum. It is difficult to gener-
alise this method for visibility algorithms, since the “vis-
ible volumes” can be very complex, and usually they are
not explicitly reconstructed. Moreover, this method is not
conservative unless changes in viewing direction and po-
sition of the viewpoint are restricted.

The methods proposed in this paper can be used to make
use of temporal and spatial coherence in the scope of ex-



isting visibility algorithms, that utilise a spatial hierarchy.
Examples of these are algorithms based on hierarchical oc-
clusion maps [12], coverage masks [6], shadow frusta [8],
and occlusion trees [1].

3 Overview

In order to describe modifications of the visibility algo-
rithm we first restrict our discussion to one particular ap-
proach – theconservative hierarchical visibility culling.
Below, we give a short overview of the data structures and
algorithms that are used in the scope of the proposed meth-
ods.

3.1 Spatial Hierarchy

The hierarchical visibility culling utilises a spatial hierar-
chy, that is built over all objects of the scene. We have
focused on kD–trees [10] because of their high flexibil-
ity and simplicity of building and traversal. A node of
the kD–tree corresponds to an axis–aligned bounding box.
Each leaf of the tree contains a list of references to objects
that intersect the corresponding box.

3.2 The Node Visibility Test

The elementary step of the hierarchical visibility culling
is thenode visibility test, i.e., visibility classification of a
single node of the hierarchy using certain occlusion map.
We assume that given a viewpoint and a viewing direction
the visibility algorithm classifies visibility of the node as
completely visible, partially visibleor invisible. Although
in this paper we do not focus on the visibility determi-
nation step itself, we give a brief description of one such
algorithm (see [1] for further details).

For each position of the viewpoint several large polyg-
onal occluders are identified. These are used to build an
occlusion tree, that results from merging “shadow” frusta
of each individual occluder. Briefly, the occlusion tree is a
Binary Space Partitioning (BSP) tree [4], that has its leaves
classified asin or out, if they are occluded or unoccluded,
respectively. The node visibility test is performed using
constrained depth first search (DFS) on the occlusion tree.
The final visibility classification is obtained by hierarchi-
cal combination of visibility states of nodes reached by the
DFS.

4 Classical Approach

The classical hierarchical visibility culling proceeds asfol-
lows: Starting from the root node of the hierarchy, the
view–frustum culling is applied on the current node [9]. If
the node is outside the view–frustum it is classified invisi-
ble. Otherwise, the node visibility test is performed. If the

node is found visible all its descendants are visible. Simi-
larly, if a node is invisible all its children are invisible.De-
scendants of nodes classified as partially visible are tested
further to refine their visibility (see Figure 1). When the
visibility of all leaves is known, objects from fully visible
and partially visible leaves can be gathered and rendered
using a low–level exact visibility solver (such as depth–
buffer).
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OUTSIDE

PARTIALLY }INVISIBLE
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Figure 1: An example of the hierarchical visibility culling.
The node visibility test uses merged occlusion volumes of
four occluders.

A simple improvement can be used to avoid visibility
tests of hierarchy nodes that contain only few objects and
so the estimated cost of rendering the objects is lower than
the cost of the visibility determination. In such a case the
node can be simply classified as visible.

4.1 Modifications Overview

In order to give an overview of the proposed modifications
we first show how they are exploited in the scope of the
hierarchical visibility algorithm (see Figure 2). Thehier-
archy updatingtest is applied first. This test eventually de-
cides to skip all the remaining steps and to continue deter-
mining visibility of descendants of the current node. The
view–frustumculling can report the node as invisible if it is
outside the view–frustum. Otherwise, thevisibility propa-
gation is applied, that can succeed classifying the node as
visible or invisible. Theconservative hierarchy updating
classifies some nodes as visible with certain probability. If
all previous steps failed in determining node’s visibility,
the node visibility test is applied. Note, that the steps are
applied in order of increasing computational cost, what re-
flects the main idea of culling: use more complicated test
only when the simple one fails to find a solution.
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Figure 2: Series of steps determining visibility of a node
of the hierarchy. The novel methods are highlighted.

The rest of the paper is organised as follows: In Sec-
tion 5 the hierarchy updating method is introduced. The
visibility propagation is presented in Section 6. In Sec-
tion 7 a conservative modification of the hierarchy updat-
ing algorithm is outlined. Results and comparisons are
presented in Section 8. Finally, Section 9 discusses some
topics for future work and concludes.

5 Hierarchy Updating

The hierarchical visibility algorithm can be seen as a
traversal of the hierarchy, that is terminated either at leaves
or nodes classified either as visible or invisible. Let us call
such nodes thetermination nodesand nodes that have been
classified partially visible theopened nodes. Denote sets
of termination and opened nodes in thei-th frameT

i

and
O

i

, respectively. In the classical approachT
i

[ O

i

= V

i

,
whereV

i

is the set of all nodes visited in thei-th rendering
frame.

Imagine the viewpoint is fixed. Visibility of all nodes
of the hierarchy does not change and the setsT

i

, O
i

, and
V

i

are fixed as well. Nevertheless, the classical algorithm
repeatedly tests visibility of all nodesV

i

.
The hierarchy updating is a modification that aims to

eliminate the repeated visibility tests of the set of opened
nodes from the previous frame. It skips all nodes ofO

i�1

and applies node visibility tests only on nodes ofT

i�1

. In

order to propagate eventual changes in visibility up into
the hierarchy the visibility states determined at the termi-
nation nodes are pulled up according to the following rule:
The visibility state of the node is updated as visible or in-
visible, if all its children have been classified as visible or
invisible, respectively. Otherwise, it remains partiallyvis-
ible and thus opened. The pseudo–code of the hierarchical
visibility algorithm with hierarchy updating is outlined in
Figure 3.

Algorithm HierarchicalVisibility( NODE )
1: begin
2: if NODE is leaf or NODE.visibility6= PARTIALLY
3: (* termination nodes *)
4: or NODE.frame< frame-1then
5: begin
6: NODE.visibility TestVisibility( NODE );
7: NODE.frame frame;
8: end
9: case NODE.visibility of

10: VISIBLE : Render subtree of NODE;
11: PARTIALLY :
12: if NODE is leafthen Render NODE;
13: else
14: for all children C of NODE do
15: HierarchicalVisibility(C);
16: (* pull-up *)
17: if visibility of all children equalsv then
18: begin
19: NODE.visibility v;
20: NODE.frame frame;
21: end
22: INVISIBLE : (* terminate the DFS *)
23: end
24: end

Figure 3: Pseudo–code of the hierarchical visibility
culling with hierarchy updating. Note, that the set of ter-
mination nodes is not maintained explicitly. Instead, each
node contains its previous visibility classification. The
frame variable asociated with a node is used to identify
nodes “below” the current termination nodes.

Consequently, the modification does not change the fi-
nal visibility classification, that is the same as the one ob-
tained using the classical approach. The behaviour of the
modified hierarchical visibility algorithm is illustratedin
Figure 4. Note, that if the pull up did not take place the al-
gorithm could end up with the termination nodes being all
leaves of the hierarchy. Hence, it would loose advantages
of the hierarchical algorithm.

For kD–treesjO
i

j = jT

i

j�1. Thus the hierarchy updat-
ing can save almost a half of the visibility tests, that would
be applied on the interior nodes of the hierarchy.
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Figure 4: Illustration of the hierarchy updating. Initially the algorithm proceeds starting at the root of the hierarchy (left).
In the second frame the opened nodesO

0

are skipped and the visibility tests are applied on the termination nodesT
0

(and
eventually “below”). Visibility changes are propagated upto the hierarchy and the new set of termination nodesT

1

is
established.

6 Visibility Propagation

The hierarchical visibility culling already makes use of
spatial coherence by utilising a spatial hierarchy (kD–
tree). However, we can further increase the amount of co-
herence exploited by reusing visibility information com-
puted for neighbouring regions.

Suppose that the nodes of the spatial hierarchy are pro-
cessed in front–to–back order with respect to the view-
point. Using kD–tree this ordering is determined in a sim-
ple way [4]. First, we try to determine visibility of the
currently processed node by combining visibility classifi-
cations of its relevant neighbours. If the combination fails
we revert to the node visibility test.

Let us denote the box corresponding to nodeN asB
N

.
The visibility ofN can be determined combining visibility
of potentially visible facesF

B

N

ofB
N

(jF
B

N

j � 3). Con-
sequently, visibility of a faceF 2 F

B

N

can be determined
combining visibility of appropriateneighbour nodes. If all
faces ofF

B

N

are invisible the nodeN is invisible. Sim-
ilarly, if all faces ofF

B

N

are visible and there is no oc-
cluder intersectingB

N

, N can be classified as completely
visible. Otherwise, the visibility propagation fails and the
usual node visibility test must be applied. An example of
a node that can be classified as invisible is depicted in Fig-
ure 5.

A neighbour node ofN on a faceF is a nodeU of the
kD–tree withB

U

laying in the opposite halfspace (induced
by F ) thanB

N

and having non–empty intersection with
F . Naturally, we could keep a list of neighbour nodes for
each face. Instead, we have used neighbour links (ropes)
for kD–trees [7] that have low memory requirements and
allow hierarchical visibility propagation.

Within each faceF we associate a link to a neighbour
nodeU that has a smallest box containing the face com-
pletely (F \ B

U

= F ). When determining visibility of a
faceF there are three possible cases:

VIEWPOINT

?

INVISIBLE

VISITED

Figure 5: An example of a node that can be classified in-
visible since all its appropriate neighbours are invisible.

1. the link points to a node that is visible/invisible,

2. the link points to a node that is partially visible,

3. the link points to a node that has not been visited in
the current frame.

The first case is trivial; the visibility of the face can be
set immediately. In the second case we perform a con-
strained DFS and combine visibility of reached nodes.
The search is constrained to nodes having non–empty in-
tersection with the faceF and terminates at the termi-
nation nodesT

i

. This process is illustrated in Figure 6.
The visibility combination is performed using the same
rule as in the pull up pass of the hierarchy updating (Sec-
tion 5). Nevertheless, we can terminate the DFS whenever
the combination results in partial visibility.

The third case is solved as follows: If the link is pointing
to a node that has not been visited in the current frame,
there must be some termination node on the path to the
root. This path is followed until the termination node is
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Figure 6: Illustration of the hierarchical visibility propa-
gation using ropes.
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Figure 7: Lazy propagation of the visibility classification.
Node U was not visited in the current frame. The algo-
rithm must follow the path to the root to determine visibil-
ity of U.

reached (see Figure 7). Note, that if the visibility states
were propagated into subtrees of the termination nodes,
the third case would never occur.

6.1 Temporal coherence

The visibility propagation does not always succeed to de-
termine visibility of the processed node. In such a case it
introduces an additional overhead into the visibility deter-
mination. However, we can use information obtained in
the previous frame to guide the algorithm in the current
frame.

Firstly, we avoid visibility propagation on nodes that we
expect to remain partially visible and thus the visibility
propagation would probably fail. To achieve this we apply
the visibility propagation only on nodes that have not been
classified as partially visible in the previous frame. Sec-
ondly, if for a given node the visibility propagation suc-
ceeded in the previous frame, it is applied in the current
frame as well. Otherwise, it is applied with certain proba-
bility p

vp

< 1.

7 Conservative Hierarchy Updat-
ing

The hierarchy updating method ensures that on each path
to a leaf node of the hierarchy at least one node is tested
for visibility. We can further reduce the expected num-
ber of node visibility tests at the cost of the conservative
behaviour of the modified algorithm. The conservative hi-
erarchy updating produces a superset of visible nodes de-
termined by the previously described algorithms (although
they are generally conservative as well, depending on the
properties of the node visibility test).

Due to the complexity of the occlusion volume it is diffi-
cult to predict changes in visibility unless a specialised vis-
ibility algorithm is involved [2]. To keep the conservative
behaviour of the algorithm we cannot classify a node as in-
visible without really determining its visibility. Neverthe-
less, assuming visibility does not change significantly over
successive frames, visibility states of visible and partially
visible nodes do not have to be updated in each frame. In-
stead, we skip the visibility determination of these nodes
with certain specified probabilityp

skip

and mark them as
visible. With 1 � p

skip

probability the algorithm updates
visibility of the node invoking the node visibility test.

8 Results and Discussion

The algorithms mentioned in the paper were tested using
a walk through the model of the fifth floor of the Soda–
Hall 1. The measurements were conducted using SGI O2
workstation with 64MB memory. The constructed kD–
tree consisted of1187 nodes. In all measurements we
used the visibility culling algorithm based on occlusion
trees [1]. For each position of the viewpoint16 occlud-
ers were identified and used to build the occlusion tree. In
the scope of one walk the path depicted in Figure 10 was
followed. If not stated differently all presented values are
averaged per one frame of the walkthrough. The following
methods were evaluated:

A — the classical approach,

B — hierarchy updating applied,

C — hierarchy updating + visibility propagation with
probabilityp

vp

= 0:5,

D — asC + conservative hierarchy updating with prob-
ability p

skip

= 0:5.

The first three plots illustrate the dependence of the al-
gorithms on the relative speed of the walk (Figures 8–a, 8–
b, and 9–a). A unit relative speed roughly corresponds to
the usual walking speed. We have measured the number
of node visibility tests, the time spent by the hierarchical
visibility determination, and the total frame time.

1http://graphics.lcs.mit.edu/˜becca/research/SodaHall
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Figure 8: (a) Dependence of the number of node visibility tests on the relative speed of the walk. (b) Average time spent
by the hierarchical visibility algorithm.
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Figure 9: (a) Average frame time depending on the relative speed of the walk. (b) Dependence of the average frame time
on the probabilityp

skip

using the conservative hierarchy updating.

All evaluated methods exhibit a very slow growth of the
number of necessary node visibility tests. For a walk of
relative speed 1.0 the following savings in number of node
visibility tests were achieved (compared toA): methodB –
47%, methodC – 50%, and methodD – 67%. The hierar-
chy updating (methodB) saves almost half of the node vis-
ibility tests as expected. We have observed that the visibil-
ity propagation (methodC) succeeds in determining visi-
bility of only few nodes that usually correspond to rather
large regions. TheD method significantly decreases the
number of node visibility tests. This is paid by a higher
number of nodes classified as partially visible or visible
(details follow further in the text).

Figure 8-b shows that the time spent by the hierarchical
visibility culling was roughly proportional to the number
of node visibility tests. Nevertheless, we can observe that
the time spent by the visibility propagation (methodC) is
not recovered by the savings in number of node visibility
tests. In particular, this follows from the fact that the node
visibility test using the occlusion tree is almost as fast as
the visibility propagation.

In Figure 9-a we can observe the conservative behaviour
of method D. When the viewpoint moves slowly, the
method achieves better frame times than the other ones.
As the relative speed of the walk increases the visibility
states of many nodes change quickly. Hence “reusing”
some previously visible nodes leads to a larger set of nodes
to render and the frame time is increased.

Finally, the behaviour of the conservative hierarchy up-
dating algorithm in dependence on the probabilityp

skip

was measured (Figure 9-b). We can observe a local mini-
mum in the average frame time atp

skip

= 0:5. For prob-
abilities greater than this minimum savings in visibility
classification do not recover the time necessary for ren-
dering otherwise invisible objects.

It is worth mentioning that our aim was not to evalu-
ate the visibility algorithm itself, but rather to document
the impact of the proposed methods. It is obvious that
if the visibility algorithm was more demanding, the pro-
posed methods would decrease the total frame time more
significantly.



9 Conclusion and Future Work

In this paper we have introduced a series of modifications
of the classical hierarchical visibility culling. The hierar-
chy updating proved to perform well in practice as it saves
almost half of the visibility tests that would have to be
applied using the classical approach. The savings would
be less remarkable for hierarchies with higher branching
factors, but our preliminary results indicate that kD–trees
with arbitratry positioned partitioning planes are much
more effective for visibility culling that octrees or bound-
ing volume hierarchies.

Suprisingly, we have observed that the visibility propa-
gation saves only few visibility tests. This documents that
the spatial coherence is already exploited well in the clas-
sical approach. Finally, we have shown that the conserva-
tive hierarchy updating can improve the overall frame time
for certain settings.

We have experimented with fixed probabilities used in
both the conservative hierarchy updating and the prob-
abilistic modification of the visibility propagation algo-
rithm. Definitely, more elaborate methods should be used.
For example an average “survival” time of visible nodes
could be predicted and used in a sampling scheme ensur-
ing that the visibility of a node is correctly updated within
certain number of frames (such as Russian roulette). This
approach would eventually adapt to properties of environ-
ment surrounding the viewpoint and the efficiency of the
visibility classification algorithm. If the visibility algo-
rithm was unsuccessful most regions would be visible and
their survival time would increase. These nodes would be
tested with lower probability hence the wasted effort for
their visibility classification would be reduced.

Currently the visibility propagation method determines
only if a node is visible or invisible. Nevertheless, it could
be extended to determine that a node is partially visible
with high probability and hence to avoid the visibility test
even on nodes expected to be partially visible. This mod-
ification would benefit in sparsely occluded environments
where many small regions (leaves of the hierarchy) are
classified as partially visible.

Nowadays, the speed of the rendering subsystem is
commonly the bottleneck of the total rendering time. Nev-
ertheless, as specialize multiprocessor rendering architec-
tures appear it is important to optimize all components of
the rendering process. The proposed methods aim to make
a step further in this direction.
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Figure 10: The path used for a walk through the model of the Soda–Hall. For relative speed of the walk equal to 1.0 the
walk consists of 980 steps.

Figure 11: An example of the hierarchical visibility culling. The largest gray regions are outside of the view–frustum.
Few lighter regions in the viewing direction are completelyvisible. Invisible regions are shown in dark gray. Lighter gray
regions were found invisible by the visibility propagationalgorithm. Partially visible regions are transparent.


