RDH: Ray Distribution Heuristics for Construction of Spatial Data
Structures

Jifi Bittner*
Faculty of Electrical Engineering
Czech Technical University in Prague

Abstract

Surface area heuristics is currently the most popular method for
view independent construction of spatial hierarchies for ray trac-
ing. We present a method which modifies the surface area heuristics
by taking into account the actual distribution of rays in the scene.
This is achieved by subsampling the rays to be cast and using these
rays in order to estimate the probabilities of rays traversing through
nodes of the constructed hierarchy. The main aim of our paper is to
analyze the potential of taking the ray distribution into account. The
results indicate that we can achieve a minor speedup of ray traver-
sal compared to standard SAH. For large densely occluded scene
we can also save the construction time and memory consumption
of the hierarchy by not subdividing parts of the scene where no rays
are traced.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—[Ray tracing]

1 Introduction

The fundamental task of ray tracing is to determine visibility along
a given ray, i.e. to find the closest intersection of the ray with
the scene. In order to find the intersection as fast as possible the
search must be limited only to the proximity of the ray. This can be
achieved by organizing the scene in a data structure such as regular
grid, kD-tree, octree, or bounding volume hierarchy.

In particular two hierarchical data structures became very popular:
kD-trees and bounding volume hierarchies. The major advantage
of these hierarchies is their ability to efficiently adapt to irregu-
lar distribution of objects in the scene. The best known technique
for this adaptation is the Surface Area Heuristics (SAH) originally
proposed by Goldsmith and Salmon[Goldsmith and Salmon 1987]
in the context of bounding volume hierarchies and then applied to
kD-trees by MacDonald and Booth [MacDonald and Booth 1990].
The SAH uses a cost model which reflects the expected number of
computed intersections as well as the expected number of traver-
sal steps. This model is then used in a greedy optimization process
which aims to minimize the cost of the constructed hierarchy. The
core idea of the SAH is the evaluation of probability of ray visiting
nodes of the hierarchy based on their surface areas. This evaluation
assumes uniform distribution of rays and no occlusion.

In this paper we relief the assumption of uniform ray distribution
made by the SAH. Instead we use explicit knowledge of ray dis-
tribution for a given image or a sequence of images. We aim at
two main contributions: (1) We analyze the implications of the ray
uniformity assumption made by the SAH. (2) We outline possible
applications of the new heuristics which exploit spatial and tempo-
ral coherence of ray distributions.

*e-mail: bittner@fel.cvut.cz
fe-mail: havran@fel.cvut.cz

Vlastimil Havran®
Faculty of Electrical Engineering
Czech Technical University in Prague

2 Motivation and Related Work

The most time consuming task of ray tracing is finding a clos-
est intersection with the scene for every ray. This task is accel-
erated by data structures which limit the search for the intersec-
tion only to the proximity of the given ray. Data structures for ray
tracing [Whitted 1979] have been investigated intensively over last
three decades. There is a large body of literature on this topic which
have been summarized in several thorough surveys [Slusallek et al.
2005; Chang 2004; Havran 2000; Glassner 1989].

The common principle of efficient data structures for ray tracing is
to partition the scene into spatial cells and sorting the scene objects
into these cells. When a ray is cast we identify the cells intersected
by the ray and only objects referenced in these cells are tested for
intersection with the ray.

There are two main categories of data structures used in ray tracing:
regular data structures and hierarchical data structures. The most
popular regular data structure are uniform grids [Fujimoto et al.
1986]. Ray tracing with uniform grids is efficient if the distribution
of scene objects is also relatively uniform. This condition is of-
ten violated for practical scenes, which severely decreases the ray
tracing performance.

The hierarchical data structures are commonly represented by a tree
and possibly augmented by additional data structures. The major
advantage of the hierarchies is their easy adaptation to the actual
distribution of the objects.

The construction of the spatial data structures is analogous to spa-
tial sorting [Samet 2006]. In particular, a top-down construction of
a hierarchical spatial data structure is Divide and Conquer method,
which is analogous to quicksort. In order to create an interior node
of our data structure we have a set of objects residing in some spa-
tial region. Our task is to distribute the objects into two or more
child nodes. We use an algorithmic rule which prescribes how the
objects should be distributed to these child nodes. This algorithmic
rule corresponds to the pivot used in the traditional 1D quicksort.
The final performance of the data structure heavily depends of the
quality on the pivot selection.

If our pivot is formed by three planes perpendicular to main axes,
then we create an octree [Glassner 1984]. If we allow that the spa-
tial cells associated with children overlap, we create a bounding
volume hierarchy. If we use a single splitting plane perpendicular to
one coordinate axis we construct a kD-tree [MacDonald and Booth
1990]. In particular kD-trees, have proved very efficient in practice
and therefore they are often the primary choice when implementing
aray tracing application.

The major factor influencing the quality of the constructed data
structure is the positioning of the splitting plane in the spatial extent
defined by an interior node. One possibility is to put the splitting
plane in the middle (spatial median), another possibility is to bal-
ance the number of objects on the left and right side of the splitting
plane (object median). Since our query is a ray passing through
the scene until it hits an object, it is important to consider the ge-
ometric probability that a ray hits a spatial cell. This probability

is proportional to the surface area of a spatial cell assuming that
distribution of rays in the scene is uniform [Solomon 1978]. The
surface area heuristics (SAH) is a cost model which combines the
geometric probabilities with the estimates of the traversal and inter-
section costs for a node being subdivided. According to the exper-
iments [MacDonald and Booth 1990; Havran 2000] the SAH can
lead to the performance of ray tracing to be by order(s) of magni-
tude higher than when we use spatial and object median approach.

We would like to note that the cost model based on SAH is use-
ful also for other data structures that use spatial cells even if these
cells overlap. This includes octrees [Whang et al. 1995], bounding
volume hierarchies [Wald et al. 2007], and light-weight bounding
volume hierarchies [Havran et al. 2006; Woop et al. 2006].

It was shown experimentally that the kD-trees constructed with
SAH cost model are already very efficient in practice [Havran
2000]. However, Havran and Bittner [Havran and Bittner 1999]
showed that it is possible to further improve the SAH by lifting the
assumption that rays are distributed uniformly. They assumed that
the rays are formed by a perspective, orthogonal, or spherical cam-
era. In this paper we further lift the assumption that the set of rays
is generated by a camera and propose a heuristics which allows for
arbitrary ray distribution. Additionally, unlike previous techniques
the proposed method considers occlusion in the evaluation of the
cost model.

3 Overview

The method proposed in this paper extends the surface area heuris-
tics by using explicit knowledge of ray distribution. The ray distri-
bution is modeled using representative ray set. The representative
ray set is generally a subset of rays cast in the current frame. Al-
ternatively it is a subset of rays cast in the previous frame of an
animation, assuming sufficient temporal coherence between these
frames exists.

The representative ray set is used during the construction of the hi-
erarchy by tracking all rays intersecting the current leaves of the
subdivision. When the position of the splitting plane is being de-
termined for a given leaf node, we use these rays to estimate the
probabilities of rays intersecting the newly established parts of the
leaf. As a result the new data structure is adapted to the actual ray
distribution.

The paper is organized as follows: In Section 4 we review the SAH.
In Section 5 we present the new method based on the ray distribu-
tion. Section 6 describes implementation details of the new method.
Section 7 presents results and their discussion. Finally, Section 8
concludes the paper.

4 Surface Area Heuristics

Surface area heuristics is a greedy optimization method which aims
to minimize the cost of the constructed spatial subdivision. In par-
ticular it optimizes the position of the splitting plane by minimizing
the cost of traversal steps and ray-object intersections induced by
the nodes created by the split.

The SAH uses the following cost function:

C = cr+ai(pi o]+ pit | Orl), (1)

SAH
{LIR}
children, respectively, |O (L R}| is the number of objects in the left
and right children, ¢, is the traversal cost of interior node of the
hierarchy (containing the splitting plane) and c; is the cost of inter-
section computation. The crucial part of the SAH is the estimation
of p??\[;le}’ which is computed as follows:

where p is the probability of rays intersecting the left and right

S(LR
Pttty =55, @)

where Sz g, are the surface areas of the left and right child, re-
spectively, and S is the surface area of the subdivided node (see
figure 1).

Figure 1: Subdivision of a node using a splitting plane induces two
nodes with smaller bounding boxes. The SAH uses the ratio of the
surface areas of the new boxes and the original box to estimate the
probability of ray traversing to the corresponding nodes.

5 Ray Distribution Heuristics

The SAH uses surface areas to estimate the probability of ray
traversing the left or right part of the tree. Our ray distribution
heuristics evaluates these probabilities by taking into account the
distribution of the actual rays which are traced.

5.1 Representing ray distribution

We represent the distribution of rays cast by the ray tracing algo-
rithm using a representative ray set (RRS). The RRS can be sig-
nificantly smaller than the actual set of rays to be cast as long as it
describes the ray distribution reasonably well.

Let us denote the set of rays cast in frame i of an animation R
and the set of rays used as RRS for frame i Rj,,¢. We consider the
following possibilities for obtaining the RRS:

° RjeRS C R'. The set of sample rays for frame i is a subset
of rays cast in frame i. The ray distribution is described by
subsampling the original ray set.

° R;'QRS C R'=L. The set of sample rays for frame i is a subset
of rays cast in the previous frame i — 1. The ray distribution
is described by subsampling the ray set cast in the previous
frame.

. R;?RS C Uy;R!. The set of sample rays for frame i is the same
for all frames and corresponds to a subset of the rays cast in
all frames of the animation.

The first corresponds to undersampling in spatial domain assum-
ing the rays cast for neighboring pixels are coherent. The second
possibility also reuses the rays in temporal domain; rays cast in the
previous frame are used as RRS for the current frame assuming the
rays exhibit temporal coherence. The third possibility corresponds
to a more aggressive undersampling in spatial and temporal domain,
which however gives us a single ray set modeling the whole anima-
tion sequence.

5.2 Estimating traversal probabilities from RRS

For each splitting plane candidate we determine the rays which in-
tersect the two fragments of the bounding box of the subdivided
node (see Figure 2). Probability of a ray passing through the left
and right fragments of the bounding box is then estimated as:

IR(zir}]
RDH _
PRy = ‘R|) 3)

where \R{ I R}| is the number of rays intersecting the left and right
fragments respectively, and |R| is the number of rays intersecting
the whole box.

Figure 2: Illustration of the ray distribution heuristics.

From experiments we found out that using pRPH directly in the cost
function often leads to degenerated hierarchies. This happens due
to the following two reasons: (1) the probability estimate is not
perfectly accurate due to undersampling in RRS, (2) the greedy op-
timization based only on pRPH has too strong focus towards RRS
and thus is more prone to get stuck in a local minimum of the overall
cost, i.e. the hierarchy degenerates. This happens for cases when
majority of rays intersect the whole bounding box and hence the
probabilities do not differ for wide range of a splitting plane posi-
tion.

In order to solve these problems we blend the distribution of rays
in RRS and uniform ray distribution using linear interpolation of of

pRDH and pSAH .

Plury =wrp{Diy + (1= wpiZizy @

where w, is the weight of the ray distribution probability estimate.
This weight aims to reflect the expectation that the estimate is cor-
rect for the given representative ray set. We used the following
formula for computing w,:

1

—q- (1l —
wr = 1+ *|R|

) (&)

where o and 8 are user specified constants and |R| is the number
of rays intersecting the node to be split. This function gives more
weight to RDH if |R| is large and less weight if |R| is small and we
assume that these ray do not carry enough statistical information.
For our experiments we used o = 0.9 and 8 = 0.1. The weighting
function of parameter |R| is depicted in Figure 3.

T W)

Wr

L L L L
1 10 100 1000 10000 100000
IRI

Figure 3: The weighting function w, for o = 0.9 and § = 0.1.

5.3 The cost function

The cost of a splitting plane candidate is computed similarly as in
the SAH:

C=c;+ci(pL|OL] + pRIOR)), (6)

where pBL| 1 1s the blended probability estimate of rays traversing

the left and right child, respectively, c; is the traversal cost and ¢; is
the intersection cost and \0L| | is the number of objects intersecting
the left and right children, respectively.

6 Implementation

This section describes several implementation details connected
with the RDH.

6.1 Computing representative ray set

For testing the influence of the new heuristics we use the following
strategy to compute the RRS. We first build a kD-tree using surface
area heuristics. Then we subsample the actual set of rays to be
cast using a regular pattern in the synthesized image. For example,
using a 2x2 pattern we obtain a RRS with size of 1/4th of all rays to
be cast. This subsampling method also handles secondary rays or
shadow rays if these are traced. Note, that when using 1x1 pattern
the RRS is equal to the actual ray set.

6.2 Efficient tracking of rays intersecting the box

For establishing the splitting plane we have to determine the set of
rays intersecting left and right part of the corresponding bounding
box.

We implemented a technique similar to the method for fast con-
struction of kD-trees proposed by Wald and Havran [Wald and
Havran 2006]. We use several data structures in order to make
the algorithm efficient: First, we use a ray segment, which stores
the entry and exit signed distances of a ray in the currently pro-
cessed box, the reference to the whole ray, and the stack of the
signed distances. Second, we use a set of ray boundaries, where
each boundary contains a reference to the corresponding ray seg-
ment and a flag, whether the boundary is left, right, or lying on
a splitting plane. Third, we use a boundary index stack to store
which ray boundaries from the whole set of boundaries belong to
the left, to the right, and to both of them. The boundary index
stack hence stores 4 integers (leftmin, leftmax, rightmin, rightmax),
which represent 3 intervals of ray boundaries when a splitting plane
is placed: (leftmin,leftmax) for rays that belong only to the left
box, (leftmin,rightmax) for rays that straddle the splitting plane,
and (rightmin, rightmax) for rays that belong only to the right box.
The data structures used in the algorithm are outlined in Figure 4.

origin, direction
minT, maxT, flag

rays (N) dist. stack
Cel T Tel TeT Tel 1

sorted ray boundaries (2*N)
x I8 TT T T T T T T T T T T T T T 7]

N1/ 7

IeﬂmlnIIeftmaxIrlghlmlnlnghtmax

boundary stack

Figure 4: Data structures used for tracking the rays intersecting the
currently subdivided node.

Before building the kD-tree with RDH we sort all three sets of ini-
tial ray boundaries, one set of ray boundaries for each axis. We
assume that a kD-tree is constructed in a depth-first-search order,
first constructing the left subtree of the current interior node. When
a splitting plane position is decided and a left subtree should be
constructed, we check the boundaries in the corresponding axis and
mark all ray segments that have to be shortened (are cut by the split-
ting plane). The original ray boundaries are stored in the stack of
signed distances associated with each ray segment data structure.
For the marked rays we recompute the boundaries in a correspond-
ing axis. All ray boundaries are then resorted by quicksort before
we start to evaluate the RDH.

The number of rays intersecting the left and right fragments induced
by the splitting plane is computed by counting the number of left
and right boundaries on the left side and the right side of a splitting
plane. The cost function for subsequent splitting plane candidates
is evaluated incrementally by using the sweeping plane paradigm
similarly to [Wald and Havran 2006].

When returning to an interior node after a left subtree has been
constructed, we have to change the meaning of ray boundaries that

lie on the splitting plane. These originally right boundaries for the
left subtree now become the left boundaries for the right subtree to
be constructed. The correct restore of boundary values is achieved
by storing the depth of the node (together with the signed distance
to the splitting plane) where the splitting plane has changed the
boundary for each ray. The intervals of ray boundaries are also
restored during return from both left child and right child.

In our experience this algorithm is relatively efficient as we store
the information about original end of the ray segment only for the
ray segments intersecting a splitting plane. The worst case space
complexity for this algorithm is O(N - D), where the D is the max-
imum depth of a kD-tree and N is the number of rays. In practice
the memory requirements are much lower since the case that all
rays are always intersected by a splitting plane for all interior nodes
from the root node to a leaf is very rare.

Another option how to evaluate ray distribution heuristics would
be to use sampling of rays for preselected splitting plane positions
similar to the approach of evaluating cost function with SAH [Hunt
et al. 2006]. In that case we would need to test simultaneously
both the rays from RRS and the objects. The method would have
smaller accuracy as it limits the number of splitting planes tested,
which was not desired for the analysis of our new heuristics.

7 Results

We implemented the ray distribution heuristics inside an optimized
ray tracer. For the results we used a number of test scenes of various
complexity and visibility characteristics. We tested ray casting with
primary rays only and ray tracing including shadow and secondary
rays. All images were computed in resolution of 513 x 513 pixels.
The measurements were performed on a PC with 2.4GHz P4 CPU
with 512KB L2 cache, 2GB RAM, and Linux OS.

7.1 Measurements overview

In our measurements we used 28 scenes in which we specified
52 different view points. For each measurement we evaluated the
memory cost of the constructed kD-tree (Mkp), the number of in-
tersections per ray (), the average number of traversed nodes per
ray (Nt), the construction time of the kD-tree (7¢), and the actual
time of ray casting/ray tracing (7).

The tests were divided into three categories depending on the scene
types and the rendering algorithm: (1) ray casting of low occlusion
scenes, (2) ray tracing of low occlusion scenes, (3) ray casting of
high occlusion scenes. Note that we did not test ray tracing for
high occlusion scenes as we did not have meaningful definition of
light sources for these scenes. In total we computed 78 measure-
ments, where each measurement corresponds to a different image
(either different scene, view point, or rendering algorithm). Several
measurements are shown in Table 1. The scenes and their views
correspond to snapshots shown in Figure 5. A visualization of the
render cost functions for these views is shown in Figure 6.

In further tests we do not present the absolute values of the mea-
surements, but use averages of the ratios of RDH and SAH meth-
ods for each measured parameter over all tests from the appropriate
categories.

scene method Mkp Ny Nr Tc Tr
[MB] [-] [-] [s] [s]

Ray casting, low occlusion scenes
balls5 SAH 2.76 7.02 | 39.09 0.555 | 0.450
RDH 4.04 5.60 | 38.67 1.677 | 0.444
Chevy SAH 0.34 | 13.67 5.68 0.120 | 0.252
RDH 2.14 3.78 8.66 0.489 | 0.196
jacks5 SAH 9.08 | 12.71 39.42 0.619 | 0.521
RDH 8.10 | 11.17 | 33.65 1.569 | 0.488
rings17 SAH 11.14 | 13.87 | 74.56 1.006 | 1.027
RDH 9.82 | 11.73 | 81.67 3.139 | 1.063
teapot40 SAH 8.91 419 | 29.26 0.859 | 0.346
RDH 8.20 3.16 | 27.56 1.594 | 0.344

Ray tracing, low occlusion scenes
balls5 SAH 2.76 | 1627 | 3091 0.465 | 2974
RDH 494 | 12.88 | 34.00 2470 | 3.176
Chevy SAH 0.34 | 37.48 8.54 0.131 | 2.296
RDH 245 | 1030 | 15.67 1.009 | 1.769
jacks5 SAH 9.08 | 2195 | 57.33 0.619 | 3.620
RDH 947 | 21.12 | 58.34 3.103 | 3.792
rings17 SAH 11.14 | 23.48 | 4741 1.036 | 7.615
RDH 11.62 | 21.59 | 56.93 5.693 | 8.626
teapot40 SAH 8.91 1593 | 3828 0917 | 2.022
RDH 9.36 | 11.82 | 39.36 2.579 | 2.002

Ray casting, high occlusion scenes
arena vl SAH | 13520 | 25.62 | 81.73 | 13.568 | 1.020
RDH | 126.68 | 19.11 | 61.80 | 17.660 | 0.825
arena v2 SAH | 135.20 9.38 | 6398 | 22.174 | 0.885
RDH | 109.61 6.51 | 5627 | 21.267 | 0.494
Vienna v1 SAH 77.52 11.64 | 39.79 7.328 | 0.489
RDH 77.98 8.64 | 3395 | 10.691 | 0.419
Vienna v2 SAH 71.52 6.92 | 42.51 7.339 | 0377
RDH 63.43 5.14 | 32.12 9.773 | 0.315
Vienna v3 SAH 77.52 | 1591 | 68.84 7.441 | 0.653
RDH 72.13 8.44 | 5281 10.026 | 0.489

Table 1: Experimental results for selected scenes and view points.
The selection shows 5 representative scenes (views) for ray casting
of low occlusion scenes, ray tracing of low occlusion scenes and
ray casting of high occlusion scenes. Mkp is the memory cost of
the constructed kD-tree, N is the number of intersections per ray,
Nr is the average number of traversed nodes per ray, T¢ is the con-
struction time of the kD-tree and Ty is the time of ray casting/ray
tracing.

7.2 Dependence on the size of RRS

In this test we analyzed the behavior of RDH in dependence on
the size of RRS, i.e. number of rays used for RDH. We used dif-
ferent sampling patterns to obtain RRS and computed the ratios of
measured values for RDH and SAH. The results are summarized in
Table 2.

The results indicate that the RDH is surprisingly stable with lower
number of samples. We expect that this behavior is also influenced
by blending the ray distribution with the uniform ray distribution
as described in Section 5.2. The information from rays is used in
the higher levels of the tree whereas at the deeper levels the SAH
is used with significant weight. The best results where achieved
by using the actual rays to be cast as RRS (1x1 sampling pattern),
but the results were quite stable even for lower sampling densities.
In the remaining tests presented in the paper we used 4x4 subsam-
pling as it exhibits reasonable performance rendering, while having
arelatively low overhead on the construction time of the hierarchy.

RDH RDH RDH RDH RDH
sy | [[| B []

1x1 1.19 0.72 0.91 66.90 | 0.85
2x2 1.16 0.74 092 | 22.20 | 0.93
3x3 1.18 0.73 0.92 6.38 0.89
4 x4 1.14 0.76 0.92 4.27 0.93
5x5 1.15 0.76 0.93 3.50 0.87
Tx7 1.14 0.75 0.93 242 0.94

Table 2: Dependence of the method on the size of the RRS. The
table shows a comparison of RDH and SAH for different sampling
patterns of primary rays.

7.3 Behavior for different scenarios

In order to analyze the behavior of the method for different sce-
narios we grouped the tests according to scene types into two
classes: ordinary scenes with low occlusion and complex archi-
tectural scenes with dense occlusion. In the first class we used
ten common benchmark scenes for ray tracing generated (Standard
Procedural Database [Haines 1987]) plus several other scenes. In
the second class we tested two architectural scenes: city model and
model of a sports stadium with furnished interiors. The results are
summarized in Table 3.

MKI) NI NT TC TR

M[S{}?)H NISAH NgAH TgAH TRYAH
low occlusion 1.03 0.78 0.83 2.62 | 0.85
high occlusion 0.87 0.65 | 0.84 1.31 | 0.82

scene

Table 3: Comparison of SAH and RDH on ray casting scenes with
low occlusion and high occlusion.

7.4 Ray Casting vs. Ray Tracing

We compared the behavior of the method for ray casting (only pri-
mary rays) and recursive ray tracing. For the recursive ray tracing
we casted shadow rays and secondary rays up to depth 3. The re-
sults of this test are summarized in Table 4.

2RDH NFDH NEDH TRDH TR
’ method ‘ ‘ MI,:S(/I[\;H le/\H NTTYAH TCCSAH 7%\;1

ray casting 1.03 | 0.78 | 0.83 | 2.62 | 0.85
ray tracing 1.09 1.03 | 098 | 3.80 1.05
Table 4: Comparison of SAH and RDH when using ray casting and
ray tracing algorithms.

The results indicate that on average we obtained 15% speedup for
ray casting, but the performance of recursive ray tracing was actu-
ally decreased by 5% compared to the SAH.

In ray tracing the rays are more spread over the scene and thus they
are closer to uniform distribution assumed by SAH. This explains
why the RDH does not perform as good for this case as for ray
casting. However, it is surprising that RDH doesn’t provide greater
speedup compared to SAH taking into account the fact that we con-
sider the actual ray distribution including the occlusion. For ray
casting the speedup might have some minor importance, however
for ray tracing the current form of the method does not lead to prac-
tical results.

7.5 Ray based termination

In the last test we evaluated the influence of the ray based termina-
tion criterion on the constructed hierarchies. We used a threshold of
one ray in order to decide whether to continue with the subdivision;
i.e. if there is no ray intersecting the given box the subdivision is
terminated for this node. The comparison of the RDH method and
the RDH-R method which uses the ray based termination is shown
in Table 5.

MKI) N7 T

T,

r C R
scenes RDH RDH RDH RDH RDH
MED N NF 7 T3

low occlusion 0.76 1.03 1.00 0.95 1.00
high occlusion 0.43 2.87 1.06 0.64 1.98

Table 5: Comparison of RDH-R with additional ray based termina-
tion criterion and the RDH with ordinary termination criteria.

We can observe that for low occlusion scenes the ray based termi-
nation saved about 25% of storage on average, while not increasing
the average rendering time. For high occlusion scenes the memory
savings where even more significant (57%), however the rendering
time almost doubled on average. We can observe that we signifi-
cantly increased the average number of intersections. This indicates
that there have been parts of the scenes which were not covered by
the sample rays, but were penetrated by significant number of actual
rays that have been cast.

8 Conclusion and Future Work

We presented a method for changing the surface area heuristics by
using knowledge about the actual distribution of rays in the scene.
The kd-trees constructed using the proposed ray distribution heuris-
tics achieve on average a slightly better performance than the tra-
ditional surface area heuristics for ray casting. The results indicate
that for ray tracing the method actually does not provide any mea-
surable benefit.

An important result of the paper is the observation that taking
into account the actual ray distribution does not really help in the
construction of the ray tracing hierarchy assuming the traditional
greedy top-down construction algorithm. Thus, the actual practical
application of the method to interactive ray tracing or ray tracing
of animated sequences is a subject of future work. In the future
we also want to study the possibility of using global optimization
techniques together with the new heuristics.

Acknowledgements

This work has been supported by the Ministry of Education, Youth
and Sports of the Czech Republic under the research program MSM
6840770014 and LC-06008 (Center for Computer Graphics), and
the Aktion Kontakt OE/CZ grant no. 2009/6. The Arena scene is a
courtesy of Digital Media Production a.s.

References

CHANG, A. Y.-H. 2004. Theoretical and Experimental Aspects of
Ray Shooting. PhD thesis, Politechnic University, USA.

FunMoTto, A., TANAKA, T., AND IWATA, K. 1986. ARTS: Ac-
celerated Ray Tracing System. IEEE Computer Graphics and
Applications 6, 4, 16-26.

GLASSNER, A. S. 1984. Space Subdivision For Fast Ray Tracing.
1EEE Computer Graphics and Applications 4, 10 (Oct.), 15-22.

GLASSNER, A. 1989. An Introduction to Ray Tracing. Morgan
Kaufmann.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation of
object hierarchies for ray tracing. IEEE Computer Graphics and
Applications 7, 5 (May), 14-20.

HAINES, E. A. 1987. A proposal for standard graphics environ-
ments. IEEE Computer Graphics and Applications 7, 11 (Nov.),
3-5. Available from http://www.acm.org/pubs/tog/
resources/SPD/overview.html.

HAVRAN, V., AND BITTNER, J. 1999. Rectilinear BSP Trees for
Preferred Ray Sets. In Proceedings of SCCG’99 (Spring Confer-
ence on Computer Graphics), 171-179.

HAVRAN, V., HERZOG, R., AND SEIDEL, H.-P. 2006. On the
Fast Construction of Spatial Data Structures for Ray Tracing.
In Proceedings of IEEE Symposium on Interactive Ray Tracing
2006, 71-80.

HAVRAN, V. 2000. Heuristic Ray Shooting Algorithms. PhD thesis,
Faculty of Electrical Engineering, Czech Technical University in
Prague.

HUNT, W., MARK, W. R., AND STOLL, G. 2006. Fast kd-
tree Construction with an Adaptive Error-Bounded Heuristic. In
2006 IEEE Symposium on Interactive Ray Tracing, IEEE.

MACDONALD, J. D., AND BOOTH, K. S. 1990. Heuristics for ray
tracing using space subdivision. Visual Computer 6, 6, 153-65.

SAMET, H. 2006. Foundations of Multidimensional and Metric
Data Structures. Morgan Kaufmann.

SLUSALLEK, P., SHIRLEY, P., WALD, I., STOLL, G., AND
MARK, B. 2005. SIGGRAPH 2005 Course on Interactive Ray
Tracing #38.

SOLOMON, H.
Ltd.

1978. Geometric Probability. J.W. Arrowsmith

WALD, 1., AND HAVRAN, V. 2006. On building fast kd-trees for
ray tracing, and on doing that in o(n log n). In Proceedings of
1EEE Symposium on Interactive Ray Tracing 2006, 61-69.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics 26, 1.

WHANG, K. Y., SONG, J. W., CHANG, J. W., KiMm, J. Y., CHO,
W. S., PARK, C. M., AND SONG, I. Y. 1995. Octree-R:
an adaptive octree for efficient ray tracing. IEEE Transactions
on Visualization and Computer Graphics 1, 4 (Dec.), 343-349.
ISSN 1077-2626.

WHITTED, T. 1979. An improved illumination model for shaded
display. Computer Graphics 13,2 (Aug.), 14-14.

WoopP, S., MARMITT, G., AND SLUSALLEK, P. 2006. B-
KD Trees for Hardware Accelerated Ray Tracing of Dynamic
Scenes. In Proceedings of Graphics Hardware.

balls5 jacksS teapot40 rings17

balls5 j teapot40

arena - view 1 arena - view 2 Vienna - view 1 Vienna - view 2 Vienna - view 3

Figure 5: Snapshots of selected representative scenes and their view points. Top row: ray casting of scenes with low occlusion. Middle row:
ray tracing of scenes with low occlusion. Bottom row: ray casting of scenes with high occlusion.

teapot40 rings17

o

Vienna - view 3

o

Vienna - view 2

o

Vienna - view 1

o

arena - view 2

o

arena - view 1

Figure 6: Comparison of the cost functions for root nodes of selected scenes. The red curve corresponds to SAH and the green curve to
the RDH. Note that in most cases the RDH provides a steeper local minimum, which is slightly different from the position of the minimum
determined by SAH.

