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Figure 1: A statistical definition of glossiness of surface reflectance, named variant index of glossiness rg( fr(x,ωo)) (abbreviated as VIG),
for the rendering purposes is studied and proposed in this paper to extend the Heckbert’s notation for diffuse, glossy, and specular BRDFs.

Abstract

The classification of surface reflectance functions as diffuse, spec-
ular, and glossy has been introduced by Heckbert more than two
decades ago. Many rendering algorithms are dependent on such
a classification, as different kinds of light transport will be han-
dled by specialized methods, for example, caustics require specular
bounce or refraction. As the surface reflectance models are more
and more rich and descriptive including those based on measured
data, it has not been possible to keep such a characterization sim-
ple. Each surface reflectance model is mostly handled separately,
or alternatively, the rendering algorithm restricts itself to the use of
some subset of reflectance models. We provide a general charac-
terization for arbitrary surface reflectance representation by means
of statistical tools. We demonstrate by rendered images using Ma-
tusik’s BRDF data sets for two environment maps and two 3D ob-
jects (sphere and Utah teapot) that there is even a visible percep-
tual correspondence to the proposed surface reflectance character-
ization, when we use monochromatic surface reflectance and the
albedo is normalized for rendering images to equalize perceived
brightness. The proposed characterization is intended to be used to
optimize rendering algorithms.
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1 Introduction

The surface reflectance has been studied in many scientific fields
including computer graphics, computer vision, optics, remote sens-
ing, visual appearance etc. The formalization of surface re-
flectance known as bidirectional reflectance distribution function
(BRDF) [Nicodemus et al. 1977] is in the core of the rendering
equation [Kajiya 1986]. It is known long time that some classes
of rendering algorithms are suited for some surface reflectance; i.e.
the recursive ray tracing is efficient for mirror-like surfaces, while
radiosity is efficient for diffuse surfaces. These limitations of ren-
dering algorithms made the research oriented to general solutions
that ideally would work independently on the surface reflectance
used. In many research papers and applications the algorithms pose
these limitations in form of exponent of Phong model or specular
roughness of Ward model. Sometimes the limitations are specified
in papers vaguely in terms as ‘almost diffuse, moderately glossy’,
highly glossy etc. However, such specification of the surface re-
flectance characterization is crucial for both visual quality of im-
ages and performance of many rendering algorithms.

In our paper we propose a simple but powerful characterization of
surface reflectance that can be used in rendering algorithms irre-
spective if they are biased, consistent, or unbiased. We provide the
analysis using statistical tools on how the surface reflectance influ-



ences the difficulty of computing images. We use for our analysis
the rendering equation as the integral of the product of functions
and suggest that a meaningful characterization for classification of
surface reflectance is its normalized variance defined carefully for
sampling 1

π cosθ
distribution. We advocate to use standard statisti-

cal tools instead of ad hoc approaches when such a characterization
is needed in rendering algorithms.

2 Motivation

Our motivation came upon implementation of some algorithms
such as photon mapping [Jensen 2001] that distinguishes between
several types of light transport to deal with them efficiently based on
the surface reflection. The question is whether to store photons on
the surfaces that are ‘almost diffuse’. A similar problem is whether
to store virtual point light sources in the context of many-lights
methods [Dachsbacher et al. 2013]. The algorithm needs a classifi-
cation to distinguish which surfaces are ‘diffuse or almost diffuse’
to allow to store photons on these surfaces. [Heckbert 1990] pro-
vides the classification of the surface reflectance into diffuse, mir-
ror and everything else as glossy, with possible separation of BRDF
into its diffuse and glossy parts. He also provides the description
of glossy part as the one that is inside the cone in the direction of
ideal reflection. In practice the problem is not that simple, when we
deal with real-world measured data. There are some options how
to solve the problem. First, we can use methods such as indepen-
dent component analysis to factor the BRDF into two parts and use
diffuse part and the rest directly. This is costly and it also does not
give any answer about how much diffuse is the surface reflectance.
There are attempts for the answer, such as the measure of diffuse-
ness rd = ρdiffuse/(ρdiffuse + ρspecular) by [Balling and Marciniak
2009]. Second, we can fit the data to a chosen analytical BRDF
model and use for our discrimination the parameters of the model
such as the often used exponent or specular roughness for a partic-
ular BRDF model.

In general, fitting the data to a single BRDF model and using its
selected parameter as some characterization is not possible for sev-
eral reasons. First, some measured data including anisotropic ones
or BTF, SVBRDF data can have several modalities, that can come
also from spatial filtering. The multi-modality can be captured by
some multi-lobe BRDF models such as [Lafortune et al. 1997] or in
the context of bidirectional texture functions by a mixture of func-
tions as in the model by [Wu et al. 2011]. Second, it is unclear
how to put together the specular roughness from individual lobes.
Third, even for a unimodal shaped distribution such as physically
corrected Phong model [Lafortune and Willems 1994] it is unclear
how to deal with it, since for a single lobe there is its shape given
by exponent and specular albedo and diffuse albedo. Some ana-
lytical BRDF models can be fitted better to some measured data
than the others [Ngan et al. 2005]. Some analytical models do not
have explicit diffuse parts, for some BRDF models fitting is pro-
hibitively expensive to be used in rendering algorithms. In practice
(such as [Colbert et al. 2010]) it is common to restrict the number
of BRDF models used to a few and then use some thresholds in
algorithms that work acceptably for the selected BRDF models.

The design of such ad hoc approaches is well motivated but not the-
oretically backed up or driven by well justified objectives. We show
in our analysis the solution when the objective is the minimization
of the variance of rendering equation estimator.

3 Related work

There are many connections between our research and the former
literature from different fields, due to the lack of space we limit our
discussion to only a fraction of all possible sources.

3.1 Appearance and perception

The problem how much glossy the material looks like has been
dealt with from the viewpoint of perception mostly by Hunter since
the first work by Pfund in 1930, a more detailed survey for this
topic is available in [Vangorp 2009]. There is a physical gloss mea-
sured by special gantries called glossmeters and there are tens of
definitions how the gloss should be measured in dependence on the
industry and application scenario. Further, Hunter already in 1937
presented that there are several different glosses: specular gloss,
contrast gloss, sheen, absence-of-bloom gloss or haze, distinctness-
of-image (DOI) gloss, surface-uniformity gloss. There are also
other terms in use such as effulgence, shininess, burnish, luster that
are difficult to be translated into other languages than English and
they are rather vague. In computer graphics more recently [Pel-
lacini et al. 2000] introduces a new BRDF model that is motivated
by gloss reception. [Matusik et al. 2003] provides analysis of gloss
space for 100 measured isotropic materials. More recent advances
and citations to older work are surveyed in the theses of [Vangorp
2009] and [Leloup 2012].

3.2 Image statistics, BRDF measurements, optics

[Dror et al. 2001] use image statistics to estimate BRDF from im-
ages under natural illumination and show that it is possible to use
variance, skew, kurtosis to estimate specular roughness of Ward
BRDF model. This is then improved by [Ghosh et al. 2009] by
the use of orthogonal spherical basis, where specular roughness
of Ward model corresponds to normalization and scaling of stan-
dard deviation. They also demonstrate the use of this procedure on
Ashikmin model. There is also a concept of surface roughness used
in optics (for example by [Hoover and Gamiz 2006]) as σ = σh/λ ,
where σh is the standard deviation of the surface height distribution
and λ is the illumination wavelength.

3.3 Importance sampling in rendering algorithms

The above surveyed work does not give any solution to optimize
rendering algorithms. In addition to the above mentioned notation
by [Heckbert 1990] Veach and Guibas [Veach and Guibas 1995]
and Veach in his thesis mention the concept of specular rough-
ness when developing multiple importance sampling (MIS), we
quote [Veach 1997, page 253]:

“ In particular, we consider spherical light sources
of varying radii, and glossy materials that have a sur-
face roughness parameter (r) that determines how sharp
or fuzzy the reflections are. Smooth surfaces (r = 0)
correspond to highly polished, mirror-like reflections,
while rough surfaces (r = 1) correspond to diffuse re-
flection. It is possible to simulate a variety of surface
finishes by using intermediate roughness values in the
range 0 < r < 1.”

Then the roughness is used in Phong model as exponent α =
1/r− 1, and this is used to report the results for testing MIS. [Pa-
jot et al. 2011] present a concept of ‘representativity’ to improve



on the robustness of estimators when using MIS in numerical inte-
gration. They observed the cases when the sampling leads to high
variance and propose an empirical measure to deal with the prob-
lem. From the two representativity measures presented in the pa-
per the empirical measure based on BRDF is called ‘directionality’
and consists of three parts, diffuse dd , specular ds, and mirror-like
dt . They give the derivation of directionality for physical Phong
model. For diffuse part dd = 1/(2.π), for glossy part of rough-
ness of physical Phong model as ds = 1/2π +(1− 1/2π)(π/3−
cos−1((1/2)

1
n+α )).3/π . For mirror-like interaction dt = 1. The

three terms are composed by albedo for the three parts to a sin-
gle term R( fr(x,ωi,ωo)) that is zero for diffuse BRDF and one for
mirror-like surface. This proposal on representativity is not theo-
retically backed up and cannot be generalized to arbitrary surface
reflectance.

A well-known representative of consistent algorithms that
need surface reflectance characterization is photon mapping by
Jensen [2001], where photons of the global photon map should
be stored on “mostly diffuse surfaces”. More recently, the need
for concept to quantify either diffuseness or glossiness to drive the
computation is used by Dammertz et al. [2010]. They deal with
the similar concept as Veach, given characterization r = 0 for dif-
fuse and r = 1 for specular for exponent of physically based model.
They use however proportional formulation in the form of physical
Phong model the exponent α = 1024.r and threshold rT = 0.2, but
this is also ad hoc formula not theoretically founded.

The practitioners deal with the problem of surface reflectance char-
acterization by using empirical functions derived from running the
computation and using the tested values or ad hoc formulas for dif-
ferent algorithms and BRDF models. Even for a simple case such
as environment map illumination it is needed and shown to be effi-
cient by Colbert et al. [2010]. Their proposed solution is valid only
for a single preselected BRDF model restricting parameters to a one
or two and a single environment map.

4 BRDF properties

Bidirectional reflectance distribution function (BRDF) is defined by
[Nicodemus et al. 1977] by means of the reflectance equation:

fr(x,ωo,ωi) =
dL(x→ ωo)

L(x← ωi).cos(θi)dωi

=
dL(x→ ωo)

L(x← ωi).(ωi.~n)dωi
(1)

In this definition it fulfills Helmholtz reciprocity given as

fr(x,ωo,ωi) = fr(x,ωi,ωo). (2)

Observe that fr(x,ωo,ωi) is not in principle a probability density
function (as it does not integrate to one with incoming directions
ωi, but see below), it is unit-less (i.e. unit is [sr−1], but this is still
unit-less as steradian is unit-less). To obtain a probability density
function (pdf) from the BRDF, it should be redefined using the re-
flectance equation. We can define it in the following way, for fixed
ωo and integrating over incoming directions ωi:

pdf(x,ωo,ωi) =
1

a(x,ωo)
. fr(x,ωi,ωo).(ωi.~n), (3)

where albedo a(x,ωo) for fixed outgoing direction ωo is defined as:

a(x,ωo) =
∫

Ω

fr(x,ωi,ωo).(ωi.~n)dωi (4)

And then:∫
Ω

pdf(x,ωo,ωi)dωi =
1

a(x,ωo)

∫
Ω

fr(x,ωi,ωo).(ωi.~n)dωi = 1 (5)

Observe that albedo a(x,ωo) can be considered as π times the ex-
pected value of fr(x,ωi,ωo) when sampling with pdf (ωi.~n). 1

π
:

a(x,ωo) = π

∫
Ω

fr(x,ωi,ωo).
1
π
(ωi.~n)dωi = πE[ fr(x,ωi,ωo)] (6)

What does not have physical meaning is using as pdf the BRDF
fr(x,ωi,ωo) with uniform density over ωi, although it would be
indeed a pdf conveniently normalized:∫

Ω

pdf2(x,ωo,ωi)dωi =
1

a′(x,ωo)

∫
Ω

fr(x,ωi,ωo)dωi = 1, (7)

where a′(x,ωo) is computed as:

a′(x,ωo) =
∫

Ω

fr(x,ωi,ωo)dωi (8)

5 Importance Sampling in Rendering Equa-
tion

The rendering equation [Kajiya 1986] expresses the radiance with
zero self-emission from a surface with normal vector~n as:

L(x,ωo) =
∫

Ω

L(x,ωi) fr(x,ωi,ωo).(ωi.~n)dωi, (9)

where L(x,ωi) is the incoming radiance in direction ωi. Suppose
you want to solve this equation by Monte Carlo. Let us consider
different possibilities. First, naive computation would be to uniform
sampling ωi. Estimator would be:

L(x,ωo)≈ 2π
1
N

N

∑
1

L(x,ωi) fr(x,ωi,ωo).(ωi.~n) (10)

Then you can do importance sampling. First possibility is to do
importance sampling upon incoming radiance L(x,ωi), then the es-
timator for radiance becomes:

L(x,ωo)≈ Lave
i (x)

1
N

N

∑
1

fr(x,ωi,ωo).(ωi.~n), (11)

where
Lave

i (x) =
∫

Ω

L(x,ωi)dωi (12)

According to the importance sampling definition, it comes natural
to include the cosine term in the importance sampling pdf, how-
ever, this is in practice difficult, costly, or impossible. This second
estimator would be then:

L(x,ωo)≈ L
′ave
i (x)

1
N

N

∑
1

fr(x,ωi,ωo), (13)

where L
′ave
i (x) is the average illumination on x

L
′ave
i (x) =

∫
Ω

L(x,ωi)(ωi.~n)dωi (14)

Observe the variance of the estimator eq. 13 becomes null when fr
is constant (i.e. diffuse case) unlike the estimator eq. 11 for which
variance will become non-zero.



Doing importance sampling on fr times cosine, we end up in the
estimator for radiance

L(x,ωo)≈ a(x,ωo)
1
N

N

∑
1

L(x,ωi) (15)

This is the symmetrical case of estimator eq. 13, and variance be-
comes null when incoming radiance is constant.

5.1 Analysis for constant environment map and ar-
bitrary BRDF

We consider further as an example illumination by environment
map, where by symbol R(ωi) we denote the radiant intensity of
environment map at direction ωi (in Watts/steradian). Considering
R(x,ωi) = const = R, outgoing radiance L(x,ωo) becomes:

L(x,ωo) = R ·
∫

Ω

fr(x,ωi,ωo).(ωi.~n)dωi = R ·a(x,ωo) (16)

Thus albedo is the outgoing radiance for constant incoming radi-
ance R = 1. The estimator that includes the cosine term in the sam-
pling, i.e. eq. 13, becomes for R = 1:

L(x,ωo)≈ π
1
N

N

∑
1

fr(x,ωi,ωo) (17)

and for cosine term not included in sampling, i.e. eq. 11, the esti-
mator is:

L(x,ωo)≈ 2π
1
N

N

∑
1

fr(x,ωi,ωo).(ωi.~n), (18)

as for eq. 14 we get Lave
i = π and for eq. 12 L

′ave
i = 2π for con-

stant incoming radiance R = 1. We can then estimate the variance
V (L(x,ωo)) of both Monte Carlo estimators eq. 17 and eq. 18 and
hence the noise in the image. Observe that only with estimator 17
we can have (trivially) null variance, for the case fr(x,ωi,ωo) =
const., i.e., in the diffuse or Lambertian case.

5.2 Analysis for non-constant environment map and
arbitrary BRDF

If environment map is not constant, L(x,ωo) along a primary ray
for the point on an object illuminated by the environment map can
be naively computed using eq. 10 as:

L(x,ωo)≈ 2π
1
N

N

∑
1

R(ωi) fr(x,ωi,ωo).(ωi.~n), (19)

where~n is the normal of a surface for the point x. Here we consider
full visibility to simplify the analysis.

We can resource to the two importance sampling estimators defined
above, eq. 11, 15. Let us call them L1 and L2. They correspond
to the expected value E[Rave fr(x,ωi,ωo)(ωi.~n)] when using as pdf
R(ωi)/Rave and to the expected value E[a(x,ωo)R(ωi)] when using
as pdf fr(x,ωi,ωo).(ωi.~n)/a(x,ωo), where Rave is equal to:

Rave =
∫

Ω

R(ωi)dω (20)

The two estimators become then:

L1(x,ωo) = Rave 1
N

N

∑
1

fr(x,ωi,ωo)(ωi.~n) (21)

L2(x,ωo) = a(x,ωo)
1
N

N

∑
1

R(ωi) (22)

The variance of V1 =V [Rave fr(x,ωi,ωo)(ωi.~n)] and
V2 =V [a(x,ωo)R(ωi)], in general the variance of g(x), can be esti-
mated by standard formula:

V̂ [g(X)] =
∑

N
i=1(g(xi)− (∑N

i=1 g(xi))/N)2

N−1
(23)

assuming known relation for multiplication of a function:

V [sg(X)] = s2V [g(X)] (24)

Using the equation to compute the variance of a product of two
functions h1(x) and h2(x) so g(x) = h1(x)h2(x), one of them cor-
responding to fr(x,ωi,ωo).(ωi.~n) and the second one to R(ωi), so
when sampling according to h2(x) we get the variance as follows:

s =
∫

Ω

h2(x)dx

V [sh1(X)] = s2
(∫

Ω

h1(x)2(h2(x)/s)dx− (E[h1(X)])2
)

= s
∫

Ω

h1(x)2h2(x)dx− I2 =V [I] (25)

we can compute their exact values:

V1 = Rave
∫

fr(x,ωi,ωo)
2(ωi.~n)2R(ωi)dω−L(x,ωo)

2 (26)

V2 = a(x,ωo)
∫

R(ωi)
2 fr(x,ωi,ωo).(ωi.~n)dω−L(x,ωo)

2 (27)

Suppose now we want to use N samples distributed among both
estimators, n1 + n2 = N. Any convex combination of L1 and
L2, αL1 + (1− α)L2 is an unbiased estimator of L(x,ωo), i.e.,
E[α1L1 +α2L2] = αE[L1] + (1−α)E[L2] = L(x,ωo), as E[L1] =
E[L2] = L(x,ωo). Its variance is equal to:

V [α1L1 +α2L2] = α
2V [L1]+ (1−α)2V [L2] (28)

=
α2

n1
V1 +

(1−α)2

n2
V2

5.3 Multiple importance sampling variance

The multiple importance sampling (MIS [Veach and Guibas 1995])
estimator for the studied problem in previous section can be written
as a standard Monte Carlo estimator, where the pdf f (x) is given by
a mixture of distributions (see Veach’s thesis [Veach 1997, section
9.2.2.1]), for considering two distributions we have:

f (x) = α1h1(x)+α2h2(x), α1 +α2 = 1 (29)

Using the derivation in [Havran and Sbert 2014] we can for-
mulate the expected value of h1(x)h2(x)

f (x) when samples are taken

according to pdf f (x) as follows: µ =
∫ h1(x)h2(x)

f (x) f (x)dx =∫ h1(x)h2(x)
f (x) (α1h1(x) + α2h2(x))dx = α1µ1 + α2µ2, and for both

sampling strategies indexed by k ∈ {1,2} we have µk =



∫ h1(x)h2(x)
f (x) hk(x)dx = Ek

[
h1(x)h2(x)

f (x)

]
the expected value of h1(x)h2(x)

f (x)
when samples are taken according to hk(x). The variance of
h1(x)h2(x)

f (x) can be computed as:

V
[

h1(x)h2(x)
f (x)

]
=

∫ (h1(x)h2(x)
f (x)

)2
(

2

∑
k=1

αkhk(x)

)
dx−µ

2

=
2

∑
k=1

αk

∫ (h1(x)h2(x)
f (x)

)2
hk(x)dx−µ

2

=
2

∑
k=1

αk

(
Vk

[
h1(x)h2(x)

f (x)

]
+µ

2
k

)
−µ

2

=
2

∑
k=1

αk

(
Vk

[
h1(x)h2(x)

f (x)

]
+(µk−µ)2

)
,(30)

where Vk

[
h1(x)h2(x)

f (x)

]
is the variance of h1(x)h2(x)

f (x) with respect to

function hk(x). Last equality comes from: ∑αk(−2µkµ + µ2) =
−2µ ∑αkµk + µ2 = −µ2. More details for this derivation are
in [Havran and Sbert 2014]. The interesting observation for us is
that the variance of the result computed by MIS is the weighted sum
of some variances (plus another term), similarly to the previous sec-
tion.

6 Proposal of BRDF characterization

In rendering algorithms we aim to get the lowest variance of the
estimator derived from the rendering equation such as those shown
above. We have analyzed the variance V of the product of functions
f (x) = h1(x)h2(x) as used in rendering equation, we have seen that
variances of these functions V [h1(x)] and V [h2(x)] play central role
in value of V . We have shown in Section 5.2 and 5.3 that the vari-
ance of the rendering equation is a weighted sum of variances of
individual components for the linear combination of estimators and
we have analyzed the variance of a product of two functions when
using MIS.

As the rendering equation eq. 9 can be seen as the integral of a prod-
uct of two functions h1(x).h2(x) for h1(x) = fr(x,ωi,ωo).(ωi.~n)
and h2(x) = R(ωi), we can study its limiting cases, when envi-
ronment map R(ω) approaches a constant function. The variance
V [L(x,ωo)] when sampling from h2(x) in eq. 9, for a slowly vary-
ing environment map R(ωi), approaches the variance of BRDF
function, being equal in the limit when R(ω) is constant, i.e.,
V [L(x,ωo)] =V [ fr(x,ωi,ωo)] for sampling according to 1/π(ωi.~n).
In the limit, when environment map becomes constant, the variance
of the studied function V [L(x,ωo)] is determined by the variance of
surface reflectance V [ fr(x,ωo)], for both eqs. 28 and 30.

Clearly, the variance of V [ fr(x,ωo)] plays a key role in for this sim-
plified analysis, as almost always, when fr(x,ωo).ωi.~n and R(x,ωo)
will not get correlated, the higher the value of V [ fr(x,ωo)] the
higher the value of V [L(x,ωo)]. Therefore we suggest to use the
variance of BRDF in addition to another commonly used statistical
characterization known as albedo a(x,ωo) that as we have seen cor-
responds to π times mean value E[ fr(x,ωo)] in eq. 6. We argue that
this is more natural than using ad hoc definitions of diffuseness as
used by some papers in the past and that our definition is enough
general and not dependent on a particular BRDF model.

To make the proposed variance characterization approximately
comparable in the perceptual domain for a pair or set of BRDFs,
we suggest to use its normalized variant, known in statistics as in

Squared-Coefficient-of-Variation (e.g. in [Rubinstein and Kroese
2008], abbreviated as SCV). This then to some extent allows to
visually compare perceived gloss if two BRDFs are normalized by
albedo. For short, we suggest to use the term variant index of glossi-
ness (abbreviated as VIG) defined as:

rg ( fr(x,ωo)) =
V [ fr(x,ωo)]
E2[ fr(x,ωo)]

=
E[( fr(x,ωo)−E[ fr(x,ωo)])

2]
E2[ fr(x,ωo)]

(31)

=
∫
( fr(x,ωo)−

∫
fr(x,ωo).(ωi.~n)dω)2.(ωi.~n)dωi

(
∫

fr(x,ωo).(ωi.~n)dω)2 ,

where variance V [ fr(x,ωo)] and mean E[ fr(x,ωo)] are computed
according to 1/π(ωi.~n) distribution. Its properties are then so
that for diffuse BRDF rg = 0, for mirror rg = ∞. Since we
know also albedo a(x,ωo) = πE[ fr(x,ωo)], the non-normalized
variance V [ fr(x,ωo)] can be easily computed when needed from
rg( fr(x,ωo)) and albedo using eq. 6. The normalization would cor-
respond in rendering to equalizing brightness of images.

We expect that the statistics above can be computed in closed form
for analytical BRDF models as we show in appendix on an example.
For measured tabulated data it is possible to compute both variant
index of glossiness and albedo numerically in precomputation and
store them to a 1D (isotropic BRDF) or 2D (anisotropic BRDF)
table similar to BRDF data, as this table has two dimensions less
than the data the overhead storage is negligible. The values for
different ωo can be then interpolated from the values in table.

Note that the same characterization is computable for other used
surface reflectance models, where Helmholtz reciprocity does not
hold, such as BTFs. After normalization rg( fr(x,ωo)) must be
computed numerically.

When the BRDF model is given by deterministic mixture of sev-
eral BRDF models, both characterization can be computed from
its components easily using the known formulas: E[∑αk.gk(X)] =

∑αk.E[gk(X)] for mean values and V [∑αk.gk(X)] = ∑α2
k V [gk(X)]

for variances.

We show rg( fr(x,ωo)) in four videos (available at web page:
http://dcgi.fel.cvut.cz/~havran/REFLVIG/) for rendering images of
two objects (sphere and Stanford Bunny) using MERL BRDF
data [Matusik et al. 2003] illuminated by two environment maps
(Grace Cathedral and St’Peters Basilica).

Limitations

For layered BRDF functions such as [Weidlich and Wilkie 2007],
where one BRDF is perfectly specular (such as lacquered wood),
the VIG rg( fr(x,ωo)) has to be computed separately for layers since
for variance mixing infinity to anything results in infinity. This cor-
responds to handling such BRDFs in rendering algorithms in prac-
tice. The perfect mirror reflections are handled by deterministically
shooting a single ray in ideally reflected direction, while diffuse and
glossy layers are solved stochastically.

7 Conclusion

We have proposed a novel and easily computable surface re-
flectance characterization VIG that can be utilized instead of ad hoc
methods used to classify on reflection bounces in the past. Instead
of using the characterization as a measure of ‘diffuseness’ in range
from zero to one we show that for rendering algorithms it is much
more meaningful the measure of ‘glossiness’ computed as the vari-
ance of BRDF in range from zero (diffuse) to infinity (mirror) nor-
malized by albedo for the sake of rough perceptual comparisons.
We would like to advocate the use of standard statistical tools for
surface reflectance models in applications and in future research.



For future work we would like to study the use of the statistical
characterization in rendering algorithms as surveyed in this paper
and the use of statistical characterizations for other pdfs such as
environment map, scattering functions etc.
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Appendix A

Analytical BRDF models are often designed to allow for impor-
tance sampling analytically. Some of them can have analytical form
of their variance and hence the characterization index rg(X). We
show here the formula for rg(X) (eq. 31) of physically based vari-
ant of Phong model presented by [Lafortune and Willems 1994].
We can derive the variance of the Lafortune-Phong model assum-
ing the whole lobe is above the surface. The simplest case is when
the outgoing direction is along the surface normal. We start with
the formulation:

fr(ωo,ωi) =
ρd

π
+ρs

n+2
2π

.cosn(θ), (32)

and knowing dωi = sinθdθdφ , we then solve two integrals:

πE[X2] =
∫

f 2
r (ωo,ωi)cosθdωi

=

(
ρd

π
+ρs

n+2
2π

cosn(θ)

)2
cosθ sinθdθdφ
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(
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ρd
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+

(
ρs
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2π
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cos2n+1(θ)sinθdθdφ
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2

(
ρd

π

)2 [
cos2

θ

]π/2

0
2π

− 1
n+2

2
ρd

π
ρs

n+2
2π

[
cosn+2(θ)

]π/2

0
2π

− 1
2n+2

(
ρs

n+2
2π

)2 [
cos2n+2(θ)

]π/2

0
2π

=
1
2

(
ρd

π

)2
2π

+
1

n+2
2

ρd

π
ρs

n+2
2π

2π

+
1

2n+2

(
ρs

n+2
2π

)2
2π

=
ρ2

d
π

+
2ρdρs

π
+ρ

2
s

(n+2)2

(2n+2)2π

The expected value of the BRDF model given in [Lafortune and
Willems 1994] we give here for the sake of completeness as it was
designed to correspond to albedo:

πE[X ] =
∫

fr(ωo,ωi)cosθdωi

=

(
ρd

π
+ρs

n+2
2π

cosn(θ)

)
cosθ sinθdθdφ

=
ρd

π
cosθ sinθdθdφ

+ρs
n+2
2π

cosn+1(θ)sinθdθdφ

= −1
2

ρd

π

[
cos2

θ

]π/2

0
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− 1
n+2

ρs
n+2
2π

[
cosn+2(θ)

]π/2

0
2π

=
1
2

ρd

π
2π +

1
n+2

ρs
n+2
2π

2π

= ρd +ρs

Then variant index of glossiness (VIG) rg(X) becomes:

rg(X) = V [ fr(x,ωo)]/E2[ fr(x,ωo)]

=
ρ2

d +2ρd .ρs +ρ2
s

(n+2)2

(2n+2)2 − (ρd +ρs)
2

(ρd +ρs)2

=
ρ2

s

(
(n+2)2

(2n+2)2 −1
)

(ρd +ρs)2 (33)

Appendix B

We reproduce here the images from [Havran and Sbert 2014] that
shows the visualization of variance for spatially varying Lafortune-
Phong BRDF model [Lafortune and Willems 1994] used above in
Figure 2 with rainbow pseudocolor mapping between blue (lowest
variance) and red (highest variance), when diffuse albedo in y axis
changes linearly and the specular exponent n in x axis using this
formula n(x) =−1−0.111211/(0.1.x0.2−0.101101) for x ∈ 〈0,1〉
that gives range for n as 〈0.1,100〉, assuming the viewer direction
is aligned with the surface normal.

In Figure 3 we give the 3D graphs of variant index of glossiness
rg( fr(x,ωo)) for different values of ρd and specular index n for the
same Lafortune-Phong BRDF model, so visualization of eq. 33.
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Figure 3: The variant index of glossiness (VIG) rg(X) for Lafortune-Phong model for unit albedo (ρd + ρs = 1) and range of values (top
left) ρd = 0 . . .1, ρs = 1−ρd , and exponent n = 0 . . .100. (top right) ρd = 0 . . . 1

5 , ρs = 1−ρd , and exponent n = 0 . . .100. (bottom left)
ρd = 0 . . .1, ρs = 1−ρd , and exponent n = 0 . . .10. (bottom right) ρd = 0 . . . 1

5 , ρs = 1−ρd , and exponent n = 0 . . .100.


