
Exploiting Temporal Coherence in Ray Casted Walkthroughs

Vlastimil Havran∗

MPI Informatik
Jiřı́ Bittner†

Vienna University of Technology
Hans-Peter Seidel‡

MPI Informatik

Abstract

We present a technique that aims at exploiting temporal coherence
of ray casted walkthroughs. Our goal is to reuse ray/object intersec-
tions computed in the last frame of the walkthrough for acceleration
of ray casting in the current frame. In particular we aim at eliminat-
ing the ray traversal and computing only a single ray/object inter-
section per pixel. If our technique does not succeed in determining
visibility, it falls back to the classical ray traversal. Visible point
samples from the last frame are reprojected to the current frame.
To identify whether these samples can be reused we apply splat-
ting and epipolar geometry constraints. We discuss two additional
techniques that handle correct appearanceof small objects. We con-
ducted a series of tests on walkthroughs of building interiors. Our
method succeeded in determining visibility of more than 78% of
pixels. For these pixels only a single ray/object intersection is exe-
cuted. The frame rate is increased by up to 47%. Finally, we argue
that the achieved speedup is relatively significant by comparing the
performance of our algorithm to the “ideal” ray shooting algorithm.

CR Categories: I.3.7 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism—Visible line/surface algo-
rithms, Ray Tracing

Keywords: hidden surface removal, temporal coherence, ray cast-
ing, ray shooting, reprojection, walkthroughs

1 Introduction

Ray casting was introduced by Appel [Appel 1968] to solve the
problem of hidden surface removal already in the late 1960’s. Ray
casting solves visibility by shooting rays through each pixel in the
synthesized image and computing the closest ray/object intersec-
tion. This elementary visibility query is also called ray shoot-
ing [Arvo 1989]. Ray shooting has been thoroughly researched for
more than three decades and it has been applied to solve various
visibility problems [Durand 1999]. Currently the most common
application of ray shooting are global illumination algorithms, such
as ray tracing or path tracing [Arvo 1989]. The original application
of ray shooting, the hidden surface removal, is nowadays typically
resolved by the z-buffer algorithm [Catmull 1975] that is commonly
implemented in graphics hardware.

∗email: havran@mpi-sb.mpg.de
†email: bittner@cg.tuwien.ac.at
‡email: hpseidel@mpi-sb.mpg.de

Z-buffer is a powerful algorithm for hidden surface removal,
but it can be very inefficient for large scenes with a high depth-
complexity. In that case the algorithm needs to rasterize many scene
objects even if they are invisible and the algorithm performs signif-
icant overdraw. The overdraw problem is commonly addressed by
visibility culling methods [Hey and Purgathofer 2001] that aim to
detect invisible parts of the scene and exclude them from render-
ing. The goal of these methods is to achieve output-sensitivity, i.e.
a running time proportional to the number of visible objects.

In contrast to the z-buffer algorithm, an efficient implementa-
tion of ray casting performs inherent visibility culling. Visibility at
the pixel is resolved as soon as the closest ray/object intersection
is found. Thus for large densely occluded scenes a software imple-
mentation of ray casting can outperform hardware accelerated z-
buffered rendering even on the latest graphics hardware [Wald et al.
2001]. It has even been forecast that ray casting is likely to surpass
z-buffer in the future for rendering highly complex scenes [Teller
and Allex 1998; Wald et al. 2001]. Another advantage of ray cast-
ing over z-buffer is its versatility with respect to the type of prim-
itives it handles. Ray casting can be applied easily for polygons,
parametric surfaces such as NURBS, implicit surfaces, procedural
objects, or CSG models.

The common drawback of ray casting compared to most other
hidden surface removal algorithms is that it does not exploit coher-
ence of nearby rays. In this paper we exploit temporal coherence
between rays shot in subsequent frames of walkthrough of a static
scene. In our model we assume that the ray/object intersection and
shading should be computed for each pixel and each viewing po-
sition. The goal of the proposed technique is to reduce the over-
head of ray casting to computing a single ray/object intersection per
pixel. We also discuss an extension of the method for ray tracing,
namely the handling of the point light sources.

We use a reprojection of visible points from the previous frame
to the new frame to eliminate ray traversal. The reprojected points
are used to determine the object that intersect the corresponding ray
in the current frame. We identify problems that occur due to repro-
jection and propose techniques that handle them. If the reprojection
does not succeed in determining visibility, we invoke the ordinary
ray traversal algorithm.

2 Previous Work

Ray casting was introduced by Appel [Appel 1968] to address
the hidden surface removal problem. Since then many techniques
have been proposed to accelerate the elementary query that is of-
ten called ray shooting [Arvo 1989]. A naive implementation of
ray shooting that tests all scene objects for an intersection with the
given ray exhibits Θ(n) time complexity. Szirmay-Kalos [Szirmay-
Kalos and Márton 1998] has shown that the worst case lower bound
of the ray shooting is Ω(logn). Havran [Havran 2001] shows ex-
perimentally that ray shooting based on kd-trees exhibits such a
logarithmic behavior in average case.

Ray shooting acceleration techniques typically use a spatial data
structure to accelerate the ray traversal and to reduce the number
of ray object intersections [Arvo 1989]. Temporal coherence be-
tween frames of an animation can be used to further improve the
ray tracing performance. Sudarsky [Sudarsky 1993] surveyed ren-



dering techniques that exploit temporal coherence, more recent pa-
per is by Demers et al. [Demers 1998]. Temporal coherence to
accelerate rendering has been studied in the context of volume ren-
dering [Gudmundsson and Randen 1990; Yagel and Shi 1993; Lin
et al. 2000], visibility culling [Coorg and Teller 1996(b); Greene
1993; Bittner and Havran 2001], and global illumination [Walter
1999; Simmons 2000; Simmons and Séquin 2000; Martin et al.
2001; Reinhard et al. 2001].

The reprojection techniques are also commonly used in the con-
text of point-based rendering [Pfister et al. 2000; Rusinkiewicz and
Levoy 2000]. Our method is closely related to work of Badt [Badt
1988] who was the first to use reprojection for ray tracing acceler-
ation. Our method is also similar to the reprojection technique of
Adelson and Hodges [Adelson 1995] which approximates visibil-
ity and shading by reprojecting already shaded points and recheck-
ing the visibility of primary rays explicitly. In contrast to the ap-
proaches mentioned above we aim at computing correct visibility
and perform view-dependent shading. We eliminate artifacts intro-
duced by the reprojection and introduce heuristics that handle the
undersampling problem.

3 The New Algorithm

The proposed technique can be subdivided into the reprojection
phase and the rendering phase. In the first frame we only invoke
the rendering phase by using an ordinary ray shooting algorithm
(ORSA). For computation of subsequent frames we first apply the
reprojection phase followed by the rendering phase. We first dis-
cuss elementary data structures used in our algorithm followed by
the discussion of the reprojection and the rendering phases.

3.1 Data Structures

For the further discussion we use a common perspective camera
model. We assume that for the i-th frame of a walkthrough we
generate an image on a viewing plane V Pi with respect to the center
of projection Ci .

The algorithm uses two auxiliary arrays of the same dimension
as the image. All ray/object intersection points computed in the i-th
frame are stored in an array denoted POSi (Points in Object Space).
Each entry of POSi is a triple (P,O, t) addressable by pixel coordi-
nates (x,y). P represents coordinates of a point in 3D space, O is a
reference to the intersected object, and t is the signed distance along
the ray to the object from center of projection Ci. Another 2D array
AIPi (Auxiliary Image Plane) is used to maintain reprojected points
for the i-th frame. Each entry of AIPi contains a triple (O, t ,cnt).
O is the reference to an object that is reprojected from the object
space to the pixel, t is the smallest signed distance from the camera
center to the object reprojected to the pixel, and cnt is the number
of points reprojected to the pixel (x,y) of AIPi.

3.2 Reprojection

The reprojection constructs the AIPi array by reprojecting points of
the POSi−1 array to the current viewing plane VPi . For each entry
of POSi−1 we reproject the corresponding 3D point by computing
coordinates of corresponding pixel (x,y) in AIPi and the signed dis-
tance t from current camera position Ci.

For each projected point we overestimate the influence of its pro-
jection by splatting using a 3× 3 kernel: We examine the 3× 3
neighborhood of a pixel (x,y). If no object has been reprojected
to a pixel (ix, iy) (ix = x− 1,x,x + 1, iy = y− 1,y,y + 1), we store
the attributes of the reprojected point to AIPi at (ix, iy). If the same
object has already been reprojected to the AIPi at (ix, iy), we incre-
ment the counter AIP(ix, iy).cnt . In this way we count how many

Figure 1: Dilatation of the object by 3×3 kernel.

points from 3D space from the same object were reprojected to the
pixel (ix, iy). If a point from another object has already been re-
projected to pixel (ix, iy) and if its signed distance is bigger than
t for the currently reprojected point, we overwrite the attributes at
AIPi(ix, iy) by the attributes of the reprojected point.

In the case of reprojecting a single object the splatting leads to a
dilatation of the object illustrated in Fig. 1.

3.3 Rendering

In the rendering phase we use the results of the reprojection to de-
cide if it is sufficient to test the ray for intersection with a single
object associated with the corresponding entry of AIPi, or if we
have to apply the ORSA that considers all scene objects.

For each pixel, the AIPi contains an information about the num-
ber of points from the closest object that are reprojected to the 3×3
neighborhood of the pixel. We compare this number with a constant
(mcnt ) to decide if ORSA can be avoided. If the number of repro-
jected points is greater than mcnt , we compute an intersection of the
given ray and the object associated with the corresponding entry of
AIPi. Otherwise we invoke the ORSA. We found out experimentally
that setting mcnt = 5 (as a majority from 9) the reprojection did not
introduce any error at this step.

The following two pseudocodes outline the reprojection and the
rendering phases of the proposed method.

4 Reprojection Errors

Reprojecting points from 3D space onto the image plane does not
guarantee the correctness of results for ray casting. There are two
cases when the reprojection can fail: the view frustum error and
the occlusion error. Similar sources of error in the context of im-
age based rendering are called the external and internal exposure
errors [McMillan 1997]. We discuss these two errors in the context
of our ray casting algorithm and suggest methods to handle them.

4.1 View Frustum Error

The view frustum error is caused by appearance of an object that
was previously outside of the current view frustum. Since there is
no information about such an object in the POSi−1 array, it cannot
be handled by the reprojection. This error can occur when the center
of projection Ci is outside the view frustum of the previous frame.

Fig. 2 shows an object Y that was not visible from C1, but be-
comes visible from C2. The reprojection cannot handle the appear-
ance of Y since the object was not intersected by any ray from C1.

To solve the view frustum error we check if the current camera
position is outside the view frustum of the previous camera position.
In such a case we skip the reprojection phase and compute visibility
of all pixels by the ORSA. However, since in a walkthrough the
camera is typically moving forward or rotates, the reprojection is
almost always possible. Note that the view frustum error cannot
occur for objects that appear in the view frustum due to camera



Algorithm 1 Reprojection Phase.
Initialize all AIP items (O=0,t=∞,cnt=0).
for each point P in POS do

Reproject P to image plane, get coordinates of pixel (x,y) and
signed distance t to P from current camera viewpoint.
for each (ix, iy) in 3×3 neighborhood of pixel (x,y) do

if (ix, iy) does not lie outside the image then
if AIP(ix, iy).O 6= 0 then

if AIP(ix, iy).t ≥ t then
AIP(ix, iy).t = t
if AIP(ix, iy).O ≡ P.O then

Increment(AIP(ix, iy).cnt)
else

{Rewrite by closer object.}
AIP(ix, iy).O = P.O
AIP(ix, iy).cnt = 1

end if
else

if AIP(ix, iy).O ≡ P.O then
Increment(AIP(ix, iy).cnt)

end if
end if

else
{First assignment to AIP(ix, iy)}
AIP(ix, iy).O = P.O
AIP(ix, iy).t = t
AIP(ix, iy).cnt = 1

end if
end if

end for
end for

Algorithm 2 Rendering Phase.
Initialize POS.
for each pixel (x,y) on the image plane do

Initialize Ray(x,y)
if AIP(x,y).cnt ≥ mcnt then

if (Ray(x,y) intersects AIP(x,y).O) then
{Intersection is found.}

end if
end if
if Intersection has not been found by reprojection then

Compute result for Ray(x,y) by ORSA.
end if

Compute color of pixel (x,y) for O and t .
if Ray(x,y) hits an object O at the point P and the signed dis-
tance t then

Add triple (P,O, t) to POS at (x,y)
end if

end for

Figure 2: View frustum error. Reprojection cannot handle appear-
ance of an object that was outside of the view frustum.

rotation. Such objects are either behind entries in POSi−1 array (if
also translation forward is involved) or there are no entries for the
corresponding pixel and thus the ORSA is invoked.

4.2 Occlusion Error

The occlusion error is caused by appearance of previously occluded
objects. If an occluded object becomes visible at a pixel (x,y), it is
possible that the reprojection suggests that another object is visible
at (x,y). This follows from the fact that we have no information
about the previously occluded objects or their occluded parts.

The occlusion error is illustrated in Fig. 3. For the camera po-
sition C1 object Y occludes object X between points c and d. For
the camera position C2 the points on X between b and c reproject
to the new viewing plane. Thus if there was a previously occluded
object in the marked quadrilateral, it is missed by the reprojection
phase. The reprojection cannot determine in advance whether there
is an occluded object. We apply a method that identifies reprojected
points that interfere with previously occluded regions in the repro-
jection (between b and c in our example).

Figure 3: Reprojection in general can result in incorrect results even
if a new camera position lies in the view frustum of the previous
camera position. The scene consists of two objects X and Y . If
there was an object in the marked quadrilateral (in yellow color), it
could be missed due to reprojection of points between b and c.

The occlusion problem has been dealt in the context of image
based rendering [McMillan 1997; Mark 1999], volumetric render-
ing [Gudmundsson and Randen 1990], and visibility preprocess-
ing [Liu et al. 2000]. Our solution to the problem is an extension
of the method of Gudmundsson [Gudmundsson and Randen 1990].
We apply a verification of a reprojected point with respect to the
previously reprojected points that is based on their depths. If the
verification fails, we discard the reprojected point.



The verification technique exploits properties of epipolar geome-
try of two camera positions. We project the current camera position
Ci to the previous viewing plane VPi−1 to obtain the epipole Ei−1.
Similarly we project Ci−1 to V Pi to obtain the epipole Ei. The points
are reprojected in an order of increasing distance from the epipole
Ei−1 on VPi−1. We check if the points exhibit increasing distance
from the epipole Ei on V Pi. If the distance on VPi for the repro-
jected point is smaller, the point is a possible source of occlusion
error and we discard it from the reprojection.

To determine the correct reprojection order we subdivide the im-
age plane VPi−1 into four quadrants according to the epipole Ei−1.
Within each quadrant we apply a different processing order of the
points to guarantee that the reprojected point has a larger distance
from the epipole Ei−1 than the previously projected points [Mark
1999][page 62]. The ordering is illustrated at the top of Figure 4.

Figure 4: (Top) The order of point reprojection with respect to the
V Pi−1. (Bottom) Result of the reprojection to V Pi. The order of re-
projection and the min/max representation of the already projected
points identifies possible occlusion problems.

To check if the distance of a reprojected point from the epipole
E2 is increased we keep maximal orthogonal distances of already
reprojected points for each column and row of AIPi. For each re-
projected point we compute its vertical distance to the row of the
epipole and its horizontal distance to the column of the epipole.
These distances are compared with the min/max distances (depend-
ing on the quadrant) stored at the column and the row the point
projects to. If both distances are increased (in absolute values), we

update min/max for the row and the column and insert the repro-
jected point to AIPi . Otherwise the point is discarded since it can
be a source of the occlusion error. The described processed is illus-
trated in Figure 4.

4.3 Undersampling Errors

The errors discussed above can occur due to missing information
about invisible scene objects either due to view frustum restrictions
or due to occlusion. In this section we discuss an additional source
of error that can occur due to the discrete character of the method,
namely the insufficient sampling density.

Ray casting computes visibility of scene objects by sampling and
so some small objects (below pixel size) can be missed. As the cam-
era is moving the objects should become visible, but since we have
no information about these objects they cannot be handled by the
reprojection. As a solution to the problem we suggest to use regular
resampling in the spatio-temporal domain. For each N-th frame we
compute some pixels of the image using the ORSA. We use disjoint
sets of pixels for each of the N subsequent images, which guaran-
tees that after N frames all the pixels in N images were at least once
computed “exactly” by the ORSA. We used N = 9, thus in each
frame we compute one pixel in a window of 3× 3 pixels using the
ORSA (see Figure 5). The sampling pattern aims to minimize dis-
crepancy in the spatio-temporal domain for straightforward camera
motion. The pattern has been found experimentally by computing
discrepancy of all possible patterns for 3×3 window.

Figure 5: Regular resampling pattern for a 3× 3 window. In k-th
frame, all pixels denoted by (k mod 9)+ 1 are computed by the
ORSA.

4.3.1 Abrupt Camera Motion

The regular resampling is sufficient for smooth changes in camera
position. For abrupt forward camera motion some small objects
can still be undersampled and missed. We calculate for each new
reprojected point if the forward movement of the camera was small
enough to detect this object by regular resampling.

Let an object Os at the signed distance t have footprint on the
image plane of size S, thus at the signed distance t/2 the footprint
of size 2S (the area of the footprint is four times larger). When S
is below pixel size, it should be safely detected within N frames by
regular reprojection, if we do not move the camera faster than δ =
t/2/N distance at each frame. We assume that the object Os that we
want to detect is attached to a larger already visible object. Thus we
compute δ , taking t as a signed distance of each reprojected point.
δ is compared with the size of the camera movement. If the camera
movement is larger than δ , the point is approaching the camera “too
fast” and it is discarded from the reprojection.

Setting N = 9 in this context is theoretically correct but very
conservative. In practice, setting N = 4 was sufficient and did not
result in any visible artifacts in our test walkthroughs.



5 Implementation

In this section we briefly discuss the implementation issues and two
optimization techniques.

5.1 Implementing Reprojection

The reprojection of a point is applied for each entry of the POS
array. Therefore an efficient implementation of the reprojection is a
key to achieve performance improvement of the proposed method.

Unlike reprojection algorithms used in image-based render-
ing [McMillan 1997; Mark 1999], we need to compute a signed
distance of the reprojected point from the camera center (required
in Algorithm 1). Our implementation of reprojection based on the
principle component of camera forward vector ~N precomputes 7
coefficients that are valid for the whole image. The reprojection of
one 3D point requires the following operations: 8× (+), 3× (−),
12×(∗), 1×(/), 1×(

√
), and 2×(IF). In our implementation the

reprojection takes time comparable to computation of an intersec-
tion between a ray and a sphere. Thus it is reasonably fast not to
become a bottleneck of the method.

5.2 Handling Background

The reprojection technique as described accelerates ray casting only
for pixels at which some object is visible. We can extend our
method to handle the empty pixels as follows: we represent the
scene background by a bounding sphere of the scene centered at
the center of the camera. The reprojection then handles the sphere
in the same way as the other scene objects.

5.3 Shifting Ray Origin

Even if the reprojection fails due to insufficient number of repro-
jected points (Section 3.3) we know that the ray/object intersection
cannot occur within certain signed distance from the viewpoint. We
can thus start the ORSA with a shifted ray origin. By shifting a ray
origin forward along the ray we avoid the traversal of empty nodes
of a spatial data structure used for computing the ray traversal.

The ray origin is shifted from the center of projection Ci by t−ε ,
where t is the computed signed distance and ε is a small positive
constant required for numerical robustness of the algorithm.

6 Results

As the ORSA we use a ray shooting algorithm using a kd-tree built
according to the surface area heuristics with split-clipping [Havran
2001]. The reprojection algorithm was implemented in C++ and
compiled using gcc-3.0.3 compiler. The tests were conducted on a
PC equipped with AMD Athlon 1.1 GHz, 768 MB RAM, running
Linux.

We have tested our reprojection algorithm on walkthroughs of
three different scenes: “townhouse”, “office”, and “theatre”. The
“townhouse” scene contains 85k objects (see snapshot in Fig. 6-
left). The “office” scene contains 626k objects. The “theatre” scene
contains 112k objects. The walkthroughs were rendered in resolu-
tion of 512×512 pixels.

In order to quantify the success of the reprojection we compute
the percentage of pixels computed by the single ray/object inter-
section (cR[%]) and by the ORSA due to failure of the reprojection
(cE [%]). The number of pixels computed by the ORSA due to reg-
ular resampling was constant for all walkthroughs (cO = 11.1%).
The results show the performance of the ORSA, two variants of
our reprojection method (REPR1 and REPR2), and an ideal ray
shooting algorithm IRSA. The ideal ray shooting algorithm[Havran

2001] is an abstract concept that uses the results of the ORSA to
determine the performance of computing ray/object intersections if
the intersected object is already known. The results are summarized
in Table 1, 2, and 3.

The proposed method achieves the following increase of the av-
erage frame rates: 1.17 to 1.72 for the “townhouse” scene, 1.66 to
1.89 for the “office” scene, 1.19 to 1.39 for the “theatre” scene. We
note that the ORSA used in our test is an already highly optimized
algorithm that is considered one of the most efficient ray shooting
techniques [Wald et al. 2001]. The reprojection algorithm would
provide a more significant speedup for less efficient ray shooting
algorithms.

RayCasting Parameters

Method TR FR ÑIT ÑT S cE [%] cR[%]

ORSA 701.1 1.17 9.23 52.0 – –
REPR1 478.4 1.72 3.37 12.2 10.9 78.0
REPR2 478.3 1.72 3.35 11.8 10.5 78.4
IRSA 344.3 4.05 0.98 0.0 – –

Table 1: Results for the “townhouse” scene (85k objects). The
walkthrough consists of 825 frames. TR is the total time of ren-
dering (including Phong shading), FR is the average frame rate.
ORSA is the ordinary ray shooting algorithm based on a kd-tree
for each pixel. REPR1 is the reprojection algorithm as described
in Section 3. REPR2 is REPR1 combined with ”shifting ray ori-
gin”. IRSA is an ideal ray shooting algorithm; note that ÑNIT < 1
since a background is visible.

Method TR FR ÑIT ÑT S cE [%] cR[%]

ORSA 979.6 1.19 3.79 58.1 – –
REPR1 837.9 1.39 2.73 26.0 31.1 57.8
REPR2 835.9 1.39 2.69 24.6 31.1 57.8
IRSA 373.8 3.11 0.999 0.0 – –

Table 2: Results for the “theatre” scene (112k objects). The walk-
through consists of 1165 frames.

Method TR FR ÑIT ÑT S cE [%] cR[%]

ORSA 892.3 1.66 3.02 44.5 – –
REPR1 789.4 1.89 1.89 21.9 33.6 55.3
REPR2 801.5 1.85 1.88 21.7 33.6 55.3
IRSA 354.6 4.19 0.71 0.0 – –

Table 3: Results for the “office” scene (626k objects). The walk-
through consists of 1489 frames.

7 Discussion

7.1 Visual Quality

Firstly, we verified the visual quality of the generated images. As a
reference we used images generated by the ORSA on the same walk-
through sequence. We did not observe any visual artifacts caused
by the reprojection for all tested walkthroughs.

7.2 Speedup

We increased the frame rates from 14% to 47% and achieved the
performance 1.70 to 2.23 times slower than the ideal ray shoot-
ing algorithm IRSA. These numbers include time of shading at
the computed ray/object intersection points. If we exclude time for



shading and evaluate speedups for pure visibility computation, we
achieve frame rate increases for computing visibility between 18%
and 82%. This evaluation is based on code profiling; the profiler
reported that about 30% of the total rendering time of the ORSA
was spent in the shading routine.

The speedup obtained by the reprojection is proportional to the
number of pixels the reprojection succeeds on. The utilization of
reprojection increases with the resolution of generated images and
decreases with the number of visible silhouettes and their length.
The length of the silhouettes in the image increases linearly with
resolution, but the number of pixels rendered increases quadrati-
cally. This suggests that the presented method has a greater poten-
tial for a high resolution rendering.

Surprisingly we have observed that the acceleration technique
that shifts the ray origin (REPR2) did not perform as well as ex-
pected. It provided a slight speedup for the “theatre” scene, but for
the “office” scene it led to a slight performance loss. We conclude
that this is caused by its computational overhead that is simply too
high to further improve the already quite efficient ray casting im-
plementation. The technique for handling the background is com-
putationally inexpensive, but since the tested scenes did not contain
many empty pixels its impact could not be properly evaluated.

7.3 Limits of Ray Casting Acceleration

We discuss the limits of ray casting acceleration and relate the
speedup provided by our technique to these limits. Our discussion
is based on the abstract concept of the ideal ray shooting algorithm
(IRSA) that knows exactly which object is intersected by the given
ray. In other words such an algorithm acts as an ideal predictor for
each input ray.

The experimental measurements (Tables 1, 2, and 3) show that
even the ORSA based on kd-trees is relatively close to the optimal
algorithm: it is 1.93 to 2.75 times slower than IRSA for the tested
scenes. Also the hardware-independent values such as number of
ray/object intersections and the number of traversal steps are very
close to ideal state. Thus the space for an improvement is already
quite small. The main reason why the performance increase of our
method is relatively small (14% to 47%) is the proximity of the
achieved running time to the IRSA. Judging from these results we
conjecture that further algorithmic acceleration of ray shooting is
very complicated. We see a greater potential for acceleration by re-
ducing the number of rays cast [Scheel et al. 2001] (thus obtaining
“less precise” images) or by exploiting explicitly parallel computa-
tions [Wald et al. 2001].

7.4 Extension for Shadow Rays

In the scope of ray tracing it is significantly more difficult to ex-
ploit temporal coherence of secondary rays than the coherence of
primary rays [Adelson 1995]. For a moving camera the secondary
rays have low coherence with respect to directions and origins of
the rays in the previous frame. However, the reprojection can be
extended to handle direct illumination by point-light sources sim-
ilarly to method of Adelson [Adelson 1995]. This technique can
also be extended to handle area light sources approximately.

8 Conclusion and Future Work

We presented a novel method for ray casting acceleration that ex-
ploits temporal coherence in the scope of walkthroughs of static
scenes. The proposed method uses reprojection of the set of visible
points from the previous frame to guide ray casting in the current
frame. The aim of our technique was to eliminate the ray traver-
sal and to compute only a single ray/object intersection per pixel.

We discussed several source of errors due to the reprojection and
proposed methods that handle these errors. In particular we used
splatting, checking camera position with respect to the view frus-
tum, ordered reprojection, regular resampling, and handling abrupt
camera motion. We suggested two optimization techniques to han-
dle the image background and to accelerate ray traversal by shifting
the ray origin.

We verified our algorithm by a series of tests. On the tested walk-
through sequences the reprojection succeeded in determining of up
to 78% pixels. The frame rate was increased approximately by 14
to 47% for moderately sized scenes. We discussed the achieved re-
sults in the context of the limits of ray shooting acceleration. We
have shown that the proposed technique is relatively close to the
“ideal” ray shooting algorithm. In particular it is 1.70 to 2.23 times
slower than the ideal state. This observation suggests that a further
purely algorithmic acceleration of ray casting with conservative re-
sults is very complicated. We see a greater potential for acceleration
by reducing the number of rays cast or by explicit parallelization.

In the future we plan to investigate properties of our algorithm
in context of global illumination methods. We would also like to
extend the algorithm for scenes with moving objects.

Acknowledgements

Here, we want to thank Philippe Bekaert for providing us the scene
models for research purposes and Jaroslav Křivánek for having
comments on previous version of the paper. Further, we would like
to thank all anonymous reviewers of the previous version of the pa-
per. This work has been partially supported by the Austrian Science
Foundation (FWF) contract no. p-13876-INF and by IST 2001-
34744 funding.

References

ADELSON, S.J., HODGES, L.F. 1995. Generating Exact Ray-Traced Ani-
mation Frames by Reprojection. In Journal IEEE-CG&A, 15, 3, 43–52.

APPEL, A. 1968. Some Techniques for Shading Machine Renderings of
Solids. In AFIPS 1968 Spring Joint Computer Conf., vol. 32, 37–45.

ARVO, J., KIRK, D. 1989. A Survey of Ray Tracing Acceleration Tech-
niques. Academic Press, 201–262.

BADT, J.S. 1988. Two Algorithms for Taking Advantage of Temporal
Coherence in Ray Tracing. The Visual Computer, 4, 3, 123–132.

BITTNER, J., HAVRAN, V. 2001. Exploiting Temporal and Spatial Coher-
ence in Hierarchical Visibility Algorithms. In Journal of Visualization &
Computer Animation, 12, 5, 277–286.

CATMULL, E.E. 1975. Computer Display of Curved Surfaces. In Proceed-
ings of the IEEE Conference on Computer Graphics, Pattern Recogni-
tion, and Data Structures, 11–17.

COORG, S., TELLER, S. 1996. Temporally Coherent Conservative Visibil-
ity. In Proceedings of the Twelfth Annual Symposium On Computational
Geometry (ISG ’96), ACM Press, 78–87.

COORG, S., TELLER, S. 1996. A Spatially and Temporally Coherent Ob-
ject Space Visibility Algorithm. Technical Report TM-546, Department
of Computer Graphics, MIT.

DEMERS, J., YOON, I., KIM, T.-Y., NEUMANN, U. 1998. Accelerating
Ray Tracing by Exploiting Frame-To-Frame Coherence. Technical Re-
port 1998/668, Computer Science Department, The University of South-
ern California, Los Angeles.

DURAND, F. 1999. 3D Visibility: Analytical Study and Applications. PhD
thesis, Universite Joseph Fourier, Grenoble, France.

GREENE, N., KASS, M. 1993. Hierarchical Z-buffer Visibility. In Proceed-
ings of ACM SIGGRAPH’93, ACM Press / ACM SIGGRAPH, 231–240.



(a) (b)

Figure 6: (a) A snapshot from a walkthrough of the “townhouse” scene. (b) Visualization of the reprojection and the rendering phases. Red
pixels are computed successfully by a single ray/object intersection, green pixels have been computed exactly by the ORSA due to reprojection
failure, white pixels are computed by the ORSA due to regular resampling, and blue pixels are computed by the ORSA due to detection of
abrupt camera motion. The profiler reported 14.7% of time spent by reprojection phase, 41.4% spent by computing the normal and Phong
shading, 2% spent by the initialization of rays, 25.5% spent by the ORSA, 3.24% spent by computing single ray/object intersection, and the
rest (13.2%) spent in the main ray casting function.

GUDMUNDSSON, B., RANDEN, M. 1990. Incremental Generation of Pro-
jections of CT-Volumes. In In Proceedings in The First Conference on
Visualization in Biomedical Computing, Atlanta.

HAVRAN, V. 2001. Heuristic Ray Shooting Algorithms. PhD thesis, Czech
Technical University in Prague, Czech Republic.

HEY, H., PURGATHOFER, W. 2001. Occlusion Culling Methods. In State
of the Art Report, in Proceedings of Eurographics 2001.

LIN, Q. DANIELSON, P.-E., GUDMUNSON, B. 2000. Frame-Coherent Vol-
ume Rendering. In Proceedings of the IASTED International Conferent,
COMPUTER GRAPHICS AND IMAGING.

LIU, X., SUN, H., WU, E. 2000. Visibility Preprocessing with Occluder
Fusion for Urban Walkthroughs. Proceedings of VRST2000, 55–60.

MARTIN, W., PARKER, S., SHIRLEY, P., THOMPSON, W. 2001. Tempo-
rally Coherent Interactive Ray Tracing. Technical Report UUCS-01-005,
Computer Science Department, University of Utah.

MARK, W.R. 1999. Post-Rendering 3D Image Warping: Visibility, Re-
construction, and Performance for Depth-Image Warping. PhD thesis,
Chapel Hill, University of North Carolina.

MCMILLAN, L. 1997. An Image-Based Approach to Three-Dimensional
Computer Graphics. PhD thesis, Chapel Hill, University of North Car-
olina.

PFISTER, H., ZWICKER, M., VAN BAAR, J., GROSS, M. 2000. Surfels:
Surface Elements as Rendering Primitives. In Proceedings of ACM SIG-
GRAPH 2000, ACM Press / ACM SIGGRAPH, 335–342.

REINHARD, E., SHIRLEY, P., HANSEN, C. 2001. Parallel Point Repro-
jection. In Proceedings of the 2001 IEEE Symposium on Parallel and
Large-Data Visualization and Graphics.

RUSINKIEWICZ, S., LEVOY, M. 2000. QSplat: A Multiresolution Point
Rendering System for Large Meshes. In Proceedings of ACM SIG-
GRAPH 2000, ACM Press / ACM SIGGRAPH, 343–352.

SCHEEL, A., STAMMINGER, M., PÜTZ, J., SEIDEL, H.-P. 2001. Enhance-
ments to Directional Coherence Maps. In Proceedings of WSCG’01,
403–410.

SIMMONS, M. 2000. A Dynamic Mesh Display Representation for the
Holodeck Ray Cache System. Technical Report CSD-00-1090, Univer-
sity of California, Berkeley.

SIMMONS, M., SÉQUIN, C.H. 2000. Tapestry: A Dynamic Mesh-based
Display Representation for Interactive Rendering. In Rendering Tech-
niques 2000, 329–340.

SUDARSKY, O. 1993. Exploiting Temporal Coherence in Animation Ren-
dering. Technical Report CIS9326, Technion - Computer Science De-
partment, Israel.

SZIRMAY-KALOS, L., MÁRTON, G. 1998. Worst-Case Versus Average
Case Complexity of Ray-Sshooting. In Journal Computing, 61, 2, 103–
131.

TELLER, S., ALLEX, J. 1998. Frustum Casting for Progressive, Interactive
Rendering. Technical Report MIT LCS TR-740, MIT.

WALD, I., SLUSALLEK, P., BENTHIN, C., WAGNER, M. 2001. Interactive
Rendering with Coherent Ray Tracing. EG 2001 Proceedings, in journal
Computer Graphics Forum, 20, 3, 153–164.

WALTER, B., DRETTAKIS, G., PARKER, S. 1999. Interactive Rendering
Using Render Cache. In Rendering Techniques ’99, 19–30.

YAGEL, R., SHI, Z. 1993. Accelerating Volume Animation by Space-
Leaping. In Proceedings of Visualization’93, 62–69.


