Evaluation of BSP properties for ray-tracing

Vlastimil Havran, Jifi Zira
Czech Technical University, Faculty of Electrical Engineering,
Department of Computer Science and Engineering, Prague, Czech Republic

e-mail: {havran, zara}@sgi.felk.cvut.cz

Abstract
This paper deals with method for evaluation of different Binary Spatial Partitioning tech-
niques. The overall time for ray-tracing is composed of two parts: the time consumed by
calculation of the intersections of rays with objects in the scene and the time required for
traversal of auxiliary spatial data structures. Different algorithms for construction of bintree
have different properties, which influence overall rendering time. We outline a new method
for evaluation of bintree qualities for ray tracing purposes by two n-tuples of parameters.

Key words: space subdivision, bintree, BSP tree, spatial data structures, ray tracing

1 Introduction

Ray tracing is commonly used for the photo-realistic rendering nowadays. Its main idea was
originally developed by Whitted[13]. He showed that up to 95 % of total rendering time is devoted
to the calculation of intersection of rays with objects. It is true for the most naive ray-tracing
approach, where the intersection calculations are performed for each ray with all objects in the
scene. Since then, a variety of space subdivision and bounding volume schemes has been proposed,
that decrease the number of intersection calculations. Firstly, the bounding volume approach
has been designed by Whitted[13], Kajiva[5], and Roth[9]. The space subdivision schemes were
designed at the second half of nineties (Glassner[2], Fujimoto and Iwate [1], Kunii and Wyvill
in 1985[12] etc.), further improved, and combined together[8]. The main representatives of this
technique are uniform space subdivision, octree, and binary space partitioning. The improvement
is based on the adaptation of data structures in dependence on the object distribution in a space.
It includes the regularity, the depth, and the positioning of splitting planes used in spatial data
structures. Haines designed a set of testing scenes [4] to measure the contribution of accelerating
methods. The methodology of testing by the same scenes is meaningful, but naturally it can
cover no properties of acceleration techniques.

The comparison of all algorithms presented in scientific papers is rather impossible because
of different implementations and different architectures used. From this reason some papers
compare the behavior of different acceleration techniques supposing the rest of the code remains
unchanged [7]. Some codes for traversal algorithm have become de facto standards [11], which
other papers refer to.

In this paper we show the drawbacks of comparison of two algorithms by their execution
times only and we outline a new formalism for this purpose. We demonstrate our approach on
adaptive bintree construction and on practical measurements carried out. Section 2 gives basic
information about bintree and about its optimization of construction from statistical point of
view. The bintree properties are described in section 3. The methodology for comparison of
two binary trees is suggested in section 4. Scene characteristics are presented in section 5. The
results of measurement are reported in section 6, they are discussed in section 7, and followed by
concluding remarks in section 8.

2 Binary space subdivision tree

Binary space subdivision tree (BSP tree, bintree) is a spatial data structure that can be used
to solve a variety of geometrical problems. It was initially developed as a means of solving the
hidden surface problem [3].

A BSP tree hierarchically subdivides a volume of n-dimensional space containing a collection
of objects defined in n-space. The result of the splitting of n-space by hyper-plane is two oriented
n-dimensional subspaces. These subspaces are always convex. The subdivision scheme forms a
bintree with a root, inner nodes, and leaves.

The leaves of a bintree for purposes of ray-tracing are either occupied by objects or they
are vacant. The splitting plane is positioned in a mid-point of the current axis in the original
algorithm [2]: the space is split by plane perpendicular to the axis, that is changed regularly in
order z, y, and z. If the number of objects in current node falls below a specific threshold or
the depth of current node is equal to a given maximal depth, current node is marked as a leaf
and no further subdivision is performed. This is the simplest and native termination criterion
for construction of bintree. There have been more sophisticated termination criteria suggested
[10] that take into account the statistic probability of a ray passing through a voxel. Another
improvements concern the positioning and orientation of splitting plane. It need not to be placed
exactly at spatial median of current space, but it is more advantageous to put it at a specific
position from statistical point of view. Due to the lack of space in this paper we refrain from
the details of adaptive construction of the tree proposed by MacDonald and Booth [6] that use
surface area heuristics.

3 Properties of a bintree for purposes of ray tracing

We have investigated thoroughly the ways for bintree construction and traversal. The bintree
properties can be grouped into two parts. The first one includes static properties gained by bin-
tree construction and the second one reflects dynamic behavior of bintree during the traversal
itself. These properties are mutually connected with the scene characteristics over which the bin-
tree is built. The method for bintree construction can significantly influence the usability of this
method. Let us recall both property groups and the scene characteristics on condition that for
both mentioned termination criteria are used during construction of a bintree. The parameters
are marked by following letters:

. specified before rendering, independent of bintree and real implementation.

. derived from the S parameters and the nature of ray-tracing algorithm itself.
. computed from the construction of the tree, independent of rendering.

. computed from rendering, they are dependent on S, D, and C.

. time parameters dependent on implementation and architecture used.

HEIQOW®

Some parameters are connected with ray-tracing traversal, some of them are independent of
the static properties of bintree, but they depend only on the parameters specified as 5, therefore
they are marked by D.

It is even possible to enlarge the set of parameters above by other mean and maximal values
or to relate the parameters to specific groups of rays, but these extensions are not so important.
The overall time required for ray tracing algorithm itself can be expressed (terms are described
in Tables 1-3) in a simplified way as follows:

Trr = (Tr+7Tp).Nvopes+T1.(Nupr+ Nusecr) + (1)
+Trun-(Nprir + Nsgcrir + Nsrir — Nupr — Nusecr — Nusg) + const.
where Tt is the time for performing one ray-object succeeded intersection test
Tryn is the time for performing one ray-object failed intersection test
Tr is the time for performing one traversal step

Tp is the time for decision step in parent node

Nx,Ny S | the resolution of the image

No S | the number of scene objects and their distribution in the scene

Np, S | the number and position of lights in the scene

OPcAMERA S | the position, the orientation, and other settings of camera

Scov S,R | percentage of screen coverage

Dcompx D | depth complexity, i.e., the average number of object primitives that
are hit by an arbitrary ray from the viewpoint (see [8])

VscenE S,D | the volume taken by the bounding box of the whole scene

VBB S | the sum of volumes specified by parallelepiped bounding boxes of

object primitives

Rppsc = Vs‘gﬁv - S the ratio of volumes for bounding boxes to the whole scene
Dagrec S | maximal depth allowed for secondary rays

Dyrax S | maximal depth allowed for construction of bintree

Noivrr S | the minimal number of objects in leaf to stop further subdivision

Table 1 Scene and image characteristics

Total time Tz can be minimized by all R parameters in this equation including the volume
of non-empty leaves and by other C' parameters, e.g., by the average number of objects in a leaf.

The ratio of T7 to Tr differs for different kinds of objects. For sphere, that is probably the
simplest object primitive for intersection computation, the ratio is about one for implementation
used in section 5. The ratio of T to Ty is about three for triangles. Opposite to the measurements
for naive ray tracing [13], the total time for traversing and the time taken by intersection tests is
quite comparable for tests performed.

More methods can be used to determine 77, Tp, 17, and Tjyy. The simplest way is to use
performance analyzer, that measures the inclusive and exclusive times devoted to procedures.
Another method, which we have also tested, is based on the equation 2. The number of traversal
steps and the total time is measured for a set of different bintrees. The unknown variables (times)
are then determined by linear regression method of the equation. The results obtained by both
methods are very similar.

4 Comparison methodology for ray tracing

The intent of this section is to give a new method for comparison of bintree construction tech-
niques for ray-tracing. The important presupposition for comparison of two methods for bintree
construction or implementation is that the measurements are performed under the same condi-
tions. In other words, the parameters denoted by S and thus also by D in previous section have
to be equal, i.e., the result of both rendering processes has to be the same image. The difference
of some parameters indicates some errors in the implementation. The time (T7g) and the mem-
ory (Nrg) requirements are the most important aspects of practical applicability of ray-tracing
software. We have more choices for comparison of ray-tracing using bintree.

The first possibility is to compare some bintree properties for a given scene by C and R
parameters independently on architecture, implementation, and compiler used. The differences
of algorithms for bintree construction follow from the (ir)regularity of changing the orientation
and the positioning of splitting spaces, the termination criteria, cutting off empty spaces etc. We
recommend to use the following septet A of the parameters above for this type of comparison:

A =< Nrs,Rernrs, Napr, Naorrr, Revwv, NrprT, NaT > (2)

Dreacoy < DypeprH C | the maximal depth reached

Nis, Niy = Nig — 1.0 C | the number of leaves and inner nodes

Ngrs C | the number of empty leaves (without objects)

RegrNnLs = I\ZQELZS C | the ratio of empty leaves to all leaves

Nro C | the total number of references to objects from all
(non-empty) leaves

Napr = Nro/No — 1.0(> 0.0) | C | the average number of objects duplication for one
object in leaves

Nyorr = 17\; ’L*g C | the average number of objects in all leaves

Naorrr, = Tﬁ‘yfm C | the average number of objects in full leaves

Vempry C | the sum of volumes taken by empty leaves

Rpywy = VSCE%?C_E‘J?;V”’ Y C | the ratio of volumes of full leafs to Vscrpng

Tcs T | time required for construction of bintree

Table 2 Static properties of bintree

The second type of comparison concerns the implementation of ray-tracing source code. In
this case the parameters S,D,C, and R remains unchanged, parameters denoted by 7' characterize
the quality of implementation, the optimization efficiency of a compiler, or the performance of
the architecture tested for ray tracing. For the overall evaluation of ray-tracer performance by
triplet A other parameters from S,D,C, and R should also be taken into consideration.

T
A=< Tes, Trg, IT >, (3)
Trr
where Tprr is the time devoted to traversing of bintree (T'rr = Nyopes-(Tr + Tp)), Tr and
Tp are introduced in formula (1).

5 Test scenes

A selection of data for testing the methods represents an important step in the experimental
verification of theoretical conclusions. Since there are many degrees of freedom in the construction
of scenes, it is useful to choose data, which have been either already used in other research works
or which contain objects and their arrangement typical for certain practical application.

Figure 1: Standard (SPD) scenes — balls, rings, and tetra (resolution 512 x 512)

Npr = Nx x Ny D | the number of primary rays

Npgrir R | number of intersections tests for all primary rays
and object primitives

Nypr = Npr.ScovERAGE D | the number of primary rays hitting the objects

Nsgr D | the number of shadow rays

NsgriT R | the number of intersection tests carried out for all
shadow rays

Nysgr D | the number of shadow rays hitting objects

Nsgcr D | the number of secondary (reflected + refracted)
rays

Nsgcrir R | the number of intersection tests performed for all
secondary rays

Nysecr R | the secondary rays hitting the objects

Ngrprr = N]{,’ 1?; f{i%i’gg:ﬁg?gg; L | R | the ratio of all intersection tests performed to min-
imal intersection tests

Nyrs R | the number of all visited leaves

NvEgLs R | the number of visited empty leaves

Nvrrs = Nrrrs — NTRELS R | the number of visited non-empty leaves

NiNoDEs R | the number of traversed inner nodes

Nyoprs = Ninobes + Nyis R | the number of all traversed nodes including inner
ones, empty, and non-empty leaves

Nar = 75 R—|{V]<7VSORD-|-E1\SZSECR R | the average number of traversed nodes per one ray
(primary, secondary, shadow)

Trr T | time required for the rendering itself of the image
on a specific bintree

Table 3 Dynamic properties of bintree

That is the reason why we have used six test scenes organized into two groups (see Table 4).
The first three scenes (balls, rings, tetra) represent Standard data known in graphics community
as standard ray tracing benchmark data (SPD) introduced by Haines [4]. Due to the simplification
of our implementation all cylinders in scene rings have been approximated by polygons.

The second group of test data consists of Specific scenes coming from user applications. The
scene fluid is the result of visualization of a fluid dynamics simulation, the m—fluid contains the
same data as fluid plus one toroid and one large mirroring plane at the bottom. The scene room
originates from CAD system and represents an example of naturally looking 3D scene.

6 Results of measurement

In this section we compare two methods for the construction of bintree by two n-tuples of pa-
rameters. The first method (1) is the algorithm [11] with splitting plane orientation changing in
cyclic order; its position lies in the mid-point. In addition to surface area heuristics, the second
method (2) uses cutting off the empty spaces in both on the outside and the inside of currently
processed node. Due to the lack of space the methods are not discussed in detail in this paper.

Hardware and programming tools

The measurement reported above have been carried out on Power Challenge XL. It is multipro-
cessor machine with 12 CPU MIPS R10000 /195 MHz, 2048 MB RAM, and the swap space with
1x2GB, 5(2)x4GB SCSI disks. The internal bandwidth of data bus is 1.2 GB/sec. The internal

Figure 2: Specific scenes — fluid, m-fluid, and room (resolution 512 x 512)

test scenes
characteristics SPD Specific
balls TiNgs tetra fluid ‘ m-fluid ‘ room

Geometry spheres | polygons | triangles | spheres | spheres, | polygons

polygons
No 7382 46201 4096 2514 2899 7788
N, 3 3 1 4 2 3
Scov %] 100.0 100.0 19.0 7.26 70.6 40.6
Rpgsc|%] 0.19 65.6 12.5 42.0 1.32 54.2
Darec 4 5 4 5 5 4
Dyrax 20 20 20 20 20 20
Norrr 1 3 1 1 1 1

Table 4 Scene and image characteristics for all test scenes

cache is 32 KB and second level cache for each processor is 2 MB. Typical benchmark for one
processor is 8.50 SPECint95 and 13.1 SPEC{p95. Operating system IRIX 6.2 is clone of UNIX.

The source codes of ray tracer in C-languages have been compiled with optimization switches
-00 by MIPS PRO Compiler. The user time (see UNIX) is reported in the time measurements
above, which is almost independent of the load of the machine. It varies a little due to the
caching between processor and main memory. The time part consumed by traversal code has
been determined by performance analyzer.

7 Discussion

We can analyze from Table 5 and 6 the speedup is reached by decreasing the number of intersection
tests and by the number of traversal steps. The ratio for methods 1 and 2 in case of percentage
parameters (the numbers itself are denoted by + or —) is calculated as the difference of percentage
for methods 1 and 2, because it is more convenient for comparison.

We have tested both the algorithms for bintree construction on different architectures, ope-
rating systems, and under different compiler optimization switches. We have also suggested the
modifications of source code for BSP traversal (see [11]), that decrease the total time for the
scenes above up to 25%. The source code optimization is based on fact the time part consumed
by traversal is significant. From the lack of space we cannot show all details of programming
techniques and their impact on the overall performance of ray-tracer, for instance the passing of

test scenes

properties balls Tings tetra

1 | 2 | 3% 1] 2 3w | 1 [2 | Ew
Nrs 3244 19892 613 | 153456 78677 51 | 96056 11322 11.8
Rernis[%] || 323 254 —6.9 159 255 +9.7| 286 259 27
Napr[%] 130.7 284.7 +154.0 | 4505 1337 —3168 | 7400 1052 —6348
NaorrL 775 1.91 24.6 | 1648 11.33 68.8 | 4.48 562 125
Rryvwv[%] 433 288 —14.5 23.4 810 -153| 6.54 312 —3.42
NrpRrrT 34.8 223 63.3 | 117.8 86.1 73.1| 21.8 13.33 61.1
Nar 26.2 4.35 16.6 | 56.51 345 61.0| 363 174 479
Tc[sed] 0.86 2.46 286 44.0 247 56.0 | 531 117 220
Trr[sed] 128.7 43.8 340 | 612.0 340.6 557 | 21.0 831 396
Trr/Trr[%] || 516 69.9 +18.3 178 164 —14| 495 60.5 +11.0

Table 5 The n-tuple A and A for SPD scenes

parameters between the functions in C-language. Let us remark at least, the total rendering time
can be decreased to 65% on average by source program modifications and by compiler switches
combined together.

8 Conclusions

In this paper, we have outlined the basic requirements and conditions needed for meaningful
comparison of two ray tracing methods.

The properties for evaluation of bintree for ray tracing purposes have been declared. We have
chosen two n-tuples of the most important parameters that should be used by graphics commu-
nity scientists to compare the ray tracing algorithms using modifications of bintree algorithm.
Septet A includes mainly the relative ratio parameters independent of implementation and char-
acterizing the quality of bintree for ray tracing purposes. Triplet A characterizes the quality of
implementations assuming that the same algorithm is used for bintree construction. Triplet A
allows to compare the quality of different implementations, the performance of architecture used
for measurement, and the impact of optimization reached by compilers.

Similar methodology should be used for evaluation and comparison of other spatial data struc-
tures used for acceleration of ray tracing or other graphics algorithms in future. We agree with
the model of the standard benchmarking data introduced by Haines as the input for algorithms,
but we draw up the requirements put on the resulting format of scientific papers to be valuable
for further usage, because simplified approach given by comparison of execution times and two
next parameters only is rather inadequate.

References

[1)Fujimoto A. and Iwata K. Accelerated ray tracing. In Proceedings Computer Graphics International
’86, pages 41-65, 1986.

[2]Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and Applications,
4(10):15-22, October 1984.

[3]Fuchs H., Kedem M.Z., and Naylor B. On visible surface generation by a priori tree structures. In
Proceedings of SIGGRAPH 80, volume 14, pages 124-133, July 1980.

test scenes

properties Sfluid m-fluid room

1 2 [| v | o2 [1 | o2 | 2%
Nis 28619 15912 55.6 | 18565 16727 90.1 | 167834 27925 16.6
RernLs[%] 11.3 277 +16.4 16.4 28.0 +11.6 27.5 18.4 —-9.1
Napr[%] 2709 1486 —1223 1631 1121 -510 13172 1483 —11689
NaorrL 2.78 3.47 1248 3.23 2.94 91.0 8.49 5.41 63.7
Rpvwv %] 372 370 -335| 428 121 —41.6 122 406 +28.4
Ngrprr 10.0 4.0 40.0 10.1 3.3 32.7 63.0 19.3 30.6
Nar 21.1 16.1 76.9 24.3 16.7 68.7 64.7 32.3 49.9
TcBsec] 1.16 1.57 135.3 1.11 1.64 148.8 14.56 3.06 21.0
Trg[sec] 20.6 14.1 68.1 63.8 36.6 57.4 277.0 71.9 26.0
Trr/Trr(%) | 751 823 +7.2| 61.8 80.2 184 26.8 41.1 +14.3

Table 6 The n-tuple A and A for specific scenes

[4]Eric A. Haines. Standard Procedural Database (SPD) package. 3D/EYE, 1992. Available via
ftp://ftp.eye.com/pub/graphics/SPD.

[5)Kajiya JT. New techniques for ray tracing procedurally defined objects. In Proceedings SIGGRAPH
’83, volume 17, pages 91-102, 1983.

[6]J. David MacDonald and Kellogg S. Booth. Heuristics for ray tracing using space subdivision. The
Visual Computer, 6(3):153-166, June 1990.

[7JEnd] R. and Sommer M. Classification of ray-generators in uniform subdivisions and octrees for ray
tracing. COMPUTER GRAPHICS forum, 13(1):3-19, 1994.

[8]Isaac D. Scherson and Elisha Caspary. Data structures and the time complexity of ray tracing. The
Visual Computer, 3(4):201-213, December 1987.

[9]Roth Scott. Ray casting for modeling solids. Computer Graphics and Image Processing, 18(2):109-144,
1982.

[10]K. R. Subramanian and Donald S. Fussell. Automatic termination criteria for ray tracing hierarchies.
In Proceedings of Graphics Interface ’91, pages 93—100, June 1991.

[11]Kelvin Sung and Peter Shirley. Ray tracing with the BSP tree. In David Kirk, editor, Graphics Gems
11T, pages 271-274. Academic Press, San Diego, 1992. includes code.

[12]Kunii T.L. and Wyvill G. CSG and ray tracing using functional primitives. In Proceedings of Computer
Graphics International ’85, pages 137-152, 1985.

[13]T. Whitted. An improved illumination model for shaded display. CACM, pages 343—-349, June 1980.

