
Pacific Graphics 2021
E. Eisemann, K. Singh, and F.-L Zhang
(Guest Editors)

Volume 40 (2021), Number 7

Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

J. Sloup and V. Havran

Department of Computer Graphics and Interaction, Faculty of Electrical Engineering
Czech Technical University in Prague, Czech Republic

Robot(6.7K) 429 MRays
sec Bike(12.6K) 217 MRays

sec Eiffel(14.9K) 499 MRays
sec Egoist(19.7K) 138 MRays

sec Tank(41.2K) 372 MRays
sec

Engine(61.7K) 181 MRays
sec Nissan(62.4K) 96 MRays

sec Lego(153.2K) 138 MRays
sec LegoX22(1862K) 49 MRays

sec IS4X8(514K) 222 MRays
sec

Figure 1: Test scenes complexity expressed as the number of NURBS surfaces + number of trimming curves varies from (6.7× 103 + 12×
103) to (514× 103 + 1589× 103). The speed of the GPU ray tracing for primary rays achieves 49 MRays/sec for complex scenes up to
499 MRays/secs for simple scenes on NVIDIA RTX 2080 Ti.

Abstract
The representation of geometric models by trimmed NURBS surfaces has become a standard in the CAD industry. In CAD
applications, the rendering of surfaces is usually solved by tessellation followed up by z-buffer rendering. Ray tracing of NURBS
surfaces has not been widely used in industry due to its computational complexity that hinders achieving real-time performance
in practice. We propose novel methods achieving faster point location search needed by trimming in the context of ray tracing
trimmed NURBS surfaces. The proposed 2D data structure based on kd-trees allows for faster ray tracing while it requires less
memory for its representation and less preprocessing time than previously published methods. Further, we show the current
state of the art for ray tracing trimmed NURBS surfaces on a GPU. With careful design and implementation, the number of rays
cast on a GPU may reach real-time performance in the order of tens to hundreds of million rays per second for moderately to
large complex scenes containing hundreds of thousands of NURBS surfaces and trimming curves.

1. Introduction

The NURBS (non-uniform rational basis spline) surface represen-
tation is a powerful mathematical tool to represent general shapes
with applications, particularly in Computer-Aided Design (CAD).
The advantage of this boundary representation is great flexibility
in expressing the shapes and easy locally predictable manipula-
tion of shapes during modeling. Since the introduction of paramet-
ric surfaces in the early sixties, the general curved surfaces have
become standard in geometric modeling with daily use in indus-
trial design. The general introduction to the math and algorithms
of NURBS is available in the book by Piegl and Tiller [PT95]. A
recent, concise but complete survey on trimmed NURBS surfaces

is available in the context of isogeometric analysis by Marussig
and Hughes [MH18]. It is also worth mentioning that a more gen-
eral modeling concept T-splines [SCF∗04], including its watertight
variant [SFL∗08], can be converted back to NURBS surfaces.

For trimmed NURBS surfaces, the 3D model is represented by
a set of base NURBS surfaces and a set of trimming curves. Each
face or patch of such a geometric shape is determined by two parts,
a base 3D shape represented by NURBS surface and a set of looped
non-intersecting trimming curves, represented by NURBS curves
in a 2D parametric domain. The trimming curves specify which re-
gions on the parametric surface of the associated base shape are
valid, possibly creating holes or islands. The math of curves and

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0003-3745-2126
https://orcid.org/0000-0002-3329-8814

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

surfaces represented by NURBS math is similar, the surface is cre-
ated as the tensor product of two curves.

There are several approaches for rendering the trimmed NURBS
surfaces. The common rendering method used in geometric model-
ing software tessellates trimmed NURBS into triangles that are ren-
dered by the z-buffer algorithm [BWN∗15]. This rendering method
is however prone to visible artifacts as the fixed tessellation may re-
sult in highlighting the triangle edges. Also, the triangular meshes
can become very large and memory intensive [GMK02]. To dimin-
ish this problem, the adaptive tessellation with respect to the view-
ing point can be used [GBK05] that can reach real-time perfor-
mance on the GPU. It can be utilized even better on modern GPUs
that feature on-the-fly tessellation.

A general global illumination computation for the scene repre-
sented by trimmed NURBS requires ray tracing that simulates the
photons carrying energy. The ray tracing algorithm allows for gen-
eral rendering algorithms and light transport. When used for direct
visualization by primary rays, it is simply correct and does not show
any rendering artifacts. While ray tracing for triangles on the GPU
is gradually replacing rasterization by z-buffer, it is not the case for
more general parametric surfaces usually handled by tessellation.

The algorithms for ray tracing of trimmed NURBS surfaces can
be categorized into two classes of methods. The first methods allow
for ray tracing NURBS surfaces directly, using numerical meth-
ods. This can be rather slow as the computation demands are high.
The second methods are indirect and have two steps. In the pre-
processing step, the NURBS surface is converted to simpler Bézier
patches by knot refinement [PT95, Chapter 5] without any loss of
shape accuracy. The converted data are used for the ray intersec-
tions using various root finding methods. These indirect methods
are usually faster and more numerically stable. The correct result
can be achieved by the so-called Bézier clipping that finds all the
roots and selects the closest one or using Krawczyk’s operator with
interval arithmetic [Ben06]. In this paper, a simple strategy to get
correct results is applied. The original surfaces are subdivided into
Bézier patches until the patch is flat enough. This then allows for
a good initial estimate for root finding methods that utilize surface
derivatives such as Newton-Raphson method [MCFS00].

The ray against 3D NURBS surface intersection computation is
important, but it is not the subject of this paper. Instead, we fo-
cus on efficient algorithms used for the trimming evaluation of the
NURBS surface in a 2D parametric domain. For all the algorithms
with reported results in the paper, the trimmed NURBS surfaces
are converted to the rational Bézier surfaces with trimmed curves
also represented by rational Bézier curves. After subdivision into
patches using flatness criteria each patch is enclosed by the axis-
aligned bounding box (parallelepiped). The global ray tracing data
structure, such as bounding volume hierarchy (BVH) [WHG84]
with optimized topology [BHH13], is built over the axis-aligned
bounding boxes of the Bézier patches.

First, the algorithm finds an intersection of a ray with the under-
lying (untrimmed) NURBS surface by traversing the BVH check-
ing the surfaces in the leaves along the ray path. When a leaf is
traversed, the ray is checked for intersection with the correspond-
ing parametric patch. The successful intersection gives 2D coor-
dinates in the parametric space that must be checked against the

looped trimming curves. Either the intersection point lies inside the
2D shape and hence the ray-object intersection is valid, or the point
lies outside the 2D shape and the ray-object intersection is invalid.
In the latter case, the ray traversal through the BVH continues along
the ray to the next leaf of the BVH.

The general data structures for ray tracing, including BVHs, oc-
trees, kd-trees and various hybrid combinations and variants, have
been carefully studied. Similarly, the algorithms for computing an
intersection of a ray with the base NURBS surface have been well
studied and optimized. We have identified that it is not the case
for the computation of trimming in the 2D parametric domain, ba-
sically point location classification inside/outside the shape rep-
resented by a set of trimmed NURBS curves. The algorithm for
computing ray-object intersection, including trimming computa-
tion, can represent the major part of the computation time depend-
ing on the size and complexity of the basic shapes and trimming
curves in a particular scene.

This paper focuses on the algorithms and data structures for trim-
ming evaluation in 2D parametric space in the context of ray tracing
NURBS surfaces suitable for GPU implementation in CUDA. We
propose new alternative algorithmic improvements yielding higher
performance on the GPU than the previous approaches. We demon-
strate the performance of the proposed algorithms on models con-
taining hundreds of thousands of trimmed NURBS surfaces and
trimming curves.

2. Previous Work on Trimming Algorithms

The trimming curves in 2D space result from geometric modeling
operations with NURBS surface where for example two NURBS
surfaces S1 and S2 are intersected. Their intersection is a 2D curve
of high degree on S1 defined in parametric 2D space and similarly
another 2D curve on S2. It can be relatively demanding to represent
the exact intersection of two surfaces [SSZ∗04], so very high order
curves could be for practical reasons approximated. The order after
simplification then can still be 10 to 15 in practice. It is important
that the set of looped trimming curves do not intersect each other
to avoid topological inconsistencies for 2D shape definition.

The trimming curves are a direct application of the Jordan curve
theorem that clearly states the definition of the inner and outer part
of the object represented by a curve. For ray tracing, the trimming
corresponds to a point location search problem in parametric UV
space, where the boundaries are formulated as a set of connected
parametric curves. The problem is 2D only and it is required to
locate the point in UV space and decide if this is inside the shape
or not.

Ray tracing over triangular meshes has been researched in
depth [MSW19] and is gradually becoming standard in rendering
practice. For involved curved geometric primitives however the pre-
vailing cost is in the computation of a ray-object intersection, so for
the overall performance, it is even more important to optimize the
complex algorithms for the ray-object intersection. In general, we
want to minimize the time for a single ray-object intersection and
reduce the count of such intersections.

The trimming algorithm is at the end of the computation of the

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

0 1 2 3 4 5 6 7 8

Figure 2: Odd-even rule, the count of a ray with boundary inter-
sections is either even (point outside the shape, red color) or odd
(inside the shape, green color).

Figure 3: Three bi-monotonic regions in a single curve, the bound-
ary points of three intervals are curve boundary points and two
local extrema. The curve segments are colored in black and red re-
peatedly.

ray-object intersection. The general framework for ray tracing is
described in the supplementary in Section 2 and a reader interested
in details can access the cited papers therein. The survey of other
approaches for rendering trimmed NURBS surfaces with trimmed
curves and related information can be found in the supplementary
document.

Before we describe a new data structure and related algorithms
for trimming suitable for GPU we will briefly recall four previous
published methods on trimming suitable for ray tracing on a GPU.
We can define our problem as follows: we need to classify whether
a 2D point in UV space is inside or outside a 2D object represented
by the set of looped non-intersecting trimming curves. Each looped
trimming curve consists of a set of connected curve segments rep-
resented by NURBS curves of arbitrary order. For the input of the
algorithms below, the NURBS curves are losslessly converted to
the rational Bézier curves by inserting new points [PT95].

2.1. Odd-Even Rule

The first method is a simple application of the odd-even rule algo-
rithm [Shi62] applying the Jordan curve theorem. It is depicted in
Figure 2. A ray is cast from the point to either a vertical or hori-
zontal direction. If the number of intersections of the ray with the
curves is odd (parity is 1) the point lies inside the shape, otherwise
the point lies outside the shape (parity is 0). A vertical or horizon-
tal direction is more computationally efficient than a general ray
direction. This method was applied for example in [MCFS00] and
requires only to store a list of curves.

2.2. Horizontal Slabs

The second method called here horizontal slabs proposed by
Schollmeyer and Fröhlich [SF09] is a natural extension of the odd-
even rule similar to range searching data structures. The approach
is depicted in Figure 4.

Figure 4: The horizontal slabs data structure [SF09]. The end-
points of curves are shown in white color, the local extrema in u-
direction in red color, and local extrema in v-direction in blue color.
The curve segments are colored in black and red repeatedly.

The horizontal slabs decrease the computation of ray intersec-
tions with curves at the expense of building and storing the data
structure. The key geometric data are the endpoints of curves and
local extrema points that break each looped curve into a set of bi-
monotonic curve segments, as shown in Figures 3 and 4. The UV-
coordinates of all points on all the curve segments are then sorted
according to v-coordinate to define N horizontal slabs. Each hori-
zontal slab is populated by all the Mi curve segments that intersect
the slab. The intersection with the horizontal lines is computed for
each segment creating a rectangular box, lying inside the horizontal
slab and having minimum coordinate Ux,1 and maximum coordi-
nate Ux,2. Then all 2Mi coordinates along U are sorted, creating up
to the 1+ 2Mi intervals inside the horizontal slab. The u-intervals
are assigned the (non-intersecting) curve segments that are inside
the u-intervals. There could be either none, one curve segment or
even more segments inside u-interval. The u-intervals in one slab
are processed from left to right, classifying the empty intervals di-
rectly as inside the shape or outside the shape, depending on the
number of boundary crosses accumulated during the processing.
The u-intervals containing curve segments are assigned the number
of accumulated boundary crosses for the predecessor interval. This
finalizes the construction of the data structure.

To evaluate whether a point (U,V) is inside the shape with the
prepared data structure, the algorithm proceeds in these steps. First,
according to V coordinate a horizontal slab that contains V is found
by a binary search in O(log2 N) time. Then again by binary search
inside the slab in the horizontal direction, the u-interval that con-
tains U is found. If the interval does not contain any curve segment,
it is classified as being inside or outside the shape by simply using
the precomputed result stored for that u-interval; the odd intersec-
tion count with the boundary represents the point inside the shape.
If the interval is assigned the set of one or more curve segments, a

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

horizontal ray is cast inside the interval to the left from the point
(U,V) computing the count of boundary intersections with the ray.
This is summed with the count of boundary intersections in all the
previous u-intervals on the left in the slab, which were precomputed
and stored. Again, if the total count of boundary intersections from
the left side of the slab until (U,V) is either odd or even, the point
is classified as either inside or outside.

2.3. Kd-tree

Another approach using spatial subdivision was provided in
the context of rendering trimmed NURBS surfaces by tessella-
tion [SF19] and fast antialiasing, although the use of kd-trees was
proposed without details for CPUs already in [Ben06]. The idea
is to use kd-trees as a 2D spatial data structure to allow for a faster
point location search, as depicted in Figure 5. The authors of [SF19]
selected kd-tree for the antialiasing for rasterization, but in addi-
tion, they introduce other modifications, so the data structure is not
built upon the same set of curve segments as for the horizontal slabs
approach.

Let us describe the terminology used here. The looped trimming
curve is a sequence of curve segments with subsequent boundary
points. The curve segment can be subdivided into the curve el-
ements, for example at local extrema or inflection points. If lo-
cal extrema are used for subdivision, the created curve segments
are bi-monotonic. The looped trimming curve is then a sequence
of curvesets, where a single curveset is a sequence of subsequent
curve elements of the same monotonicity. The spatial hierarchy for
searching is built over the curvesets.

There are two levels of the hierarchy used in searching, the outer
level corresponds to the kd-tree. The leaves of the kd-tree con-
tain the curvesets that form the inner level of the search hierarchy.
The curveset contains the subsequent curve elements with the same
monotonicity. Each curveset uses its own trivial data structure, an
array of curve elements. The monotonicity along U and V inside
each curveset allows for a simple binary search.

Each bi-monotonic curveset Si is then in preprocessing further
subdivided, using the cost function:

C(Si) =Ckd +Pi
binCi

bin +Pi
evalC

i
eval + ∑

j ̸=i
PSi∩S jC(S j) (1)

The cost C = ∑C(Si) represents the computation time needed to
evaluate if a point is inside or outside the shape, assuming no kd-
tree is built. The cost Ci

kd represents the cost for traversing the kd-
tree, which is not known in this preprocessing step and hence con-
sidered constant. The Pi

bin represents the probability of running the
binary search in the curveset. It is computed as the ratio of the sur-
face area of the bounding box of the curveset to the surface area
of the bounding box of the whole kd-tree. The Ci

bin represents the
cost for the search inside the curveset and hence is computed as
Ci

bin = (1+ log2 |Si|).cread , where |Si| is the elements count in the
curveset and cread is the cost of reading the bounding box from
memory. The Pi

eval is the probability of computing the odd-even
test by a shooting horizontal ray inside the box of any element of
the curveset. It is computed as the sum of the surface area of the
bounding boxes of individual curveset elements with respect to the
surface area of the bounding box of the whole kd-tree. The cost

Figure 5: Kd-tree space subdivision on curves. Full leaves with
curves are in gray color and empty leaves in white color, kd-tree
splitting planes are in blue.

Ci
eval is the cost of such an odd-even test. It corresponds to the av-

erage cost of reading the curveset element data. The probability
PSi∩S j is computed from the surface area of the intersection of the
bounding boxes of Si and S j.

The curvesets are inserted with their initial costs into a priority
queue. A curveset with the highest cost is checked at the priority
queue top. The curveset containing N curve elements is subdivided
for all possible N − 1 configurations for which the configuration
with the smallest cost is selected. If the cost of hypothetical sub-
division of the curveset into two new smaller curvesets is smaller
than without subdivision, the curveset subdivision is accepted. The
original curveset is removed from the priority queue and two newly
created smaller curvesets are inserted back into the priority queue.
This process continues until the subdivision is possible, so the cost
of the search is minimized.

The preprocessing step may be computationally expensive de-
pending on the count of curvesets, because PSi∩S j has to be recom-
puted upon each curveset subdivision. Each curveset has its own
rectangular bounding box and each element of the curveset also has
its own rectangular bounding box. The bounding boxes are used to
prune the search during computation. After the preprocessing, the
kd-tree is built over the curvesets, using the surface area heuris-
tic. This way the traversal for point location from the root of the
kd-tree is minimized. Finally, for each kd-tree leaf a horizontal ray
leftwards is shot and the computed odd or even parity is stored in-
side the leaf.

When the data structure is built, the algorithm for trimming first
traverses the kd-tree from the root downwards as for point location
search given a point (U,V) on the 2D parametric domain until a
leaf is found. If the leaf of the kd-tree is empty, the result is im-
mediately classified as outside or inside based on the precomputed
value (sometimes referred to as parity) stored in the leaf. Other-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

wise, the leaf contains one or more curvesets. If the point (U,V) is
inside the bounding box of the curveset, the binary search is used
to find a corresponding curveset element to be tested. Then if the
point (U,V) is inside the bounding box of the curveset element, the
correct result must be computed by shooting a ray leftwards. If the
point (U,V) lies outside the bounding box of the curveset, the cor-
rect result is determined by the mutual position of the point (U,V)
against the bounding box of the curveset. For more curvesets inside
the kd-tree leaf, the results are combined together, simply as a sum
of cross boundaries intersections and again using the odd-even rule.
The details are given in Algorithm 1 [SF19, Page 1493] and in the
supplementary.

2.4. Quadtree

Another algorithm using spatial subdivision in the spirit of kd-tree
above was given in [CVB∗12]. The initial parametric space is sim-
ply subdivided by two planes using spatial median in both axes,
creating four regions. This quadtree construction continues until a
single curve is found in a leaf and the region is small enough or
if multiple curves are inside the region. The subdivision is stopped
when the leaf reaches the maximum allowed leaf depth (set to 13
in the paper). If two curves are inside the leaf, a separating line is
computed between the curves to accelerate the search. The whole
method assumes that the initial NURBS curves are refined and
approximated by quadratic Bézier curve segments. The quadratic
degree of approximate curve segments allows single minima and
maxima for each curve segment, which is necessary to determine
initial parity. The approximation mentioned above puts the method
into the group of approximative methods that are less general than
exact approaches.

2.5. Other Related Approaches

Some other approaches useful to solve trimming for ray tracing and
rendering in general should be mentioned. A hybrid algorithm with
trimming limited to triangular Bézier patches and exploiting Bézier
clipping was presented by Liu et al. [LCCZ16]. A completely dif-
ferent approach to solve trimming for rendering was proposed by
Shen et al. [SKSD14]. The idea is to convert trimmed NURBS sur-
faces into untrimmed subdivision surfaces within a specified toler-
ance. However, this results in many primitive patches and in ren-
dering applications for modeling it would become prohibitive for
large-scale models. Another rendering method uses precomputed
intersection tables [WP15] discretizing the parametric domain of
trimming curves at a near-minimal correct resolution to guarantee
the subpixel accuracy. Less related papers using tessellation and so
on are reviewed in the supplementary.

3. New Methods

In this section, we propose new approaches to deal with ray tracing
of trimmed NURBS surfaces with a focus on trimming. The pre-
sented methods do not introduce any approximation by lowering
the degree of the original surface and curve data, such as quadratic
or cubic as it was done in some previous approaches.

The first three novel methods are directly related to the kd-
tree approach described in Section 2.3. The last presented method,

called parallel boxing, is general and can be applied to all the spa-
tial subdivisions described in the previous section.

3.1. Simple kd-tree

While the proposal of the kd-tree from Section 2.3 is well designed
and justified, it is still a relatively complex algorithm that can take
a lot of preprocessing time. The extra computation is required to
handle the priority queue and the repeated overlaps evaluation af-
ter each curveset subdivision, which may become prohibitive for
complex trimming curves.

For the above reasons, we propose a simpler algorithm that uses
a subdivision of 2D space using spatial area heuristics only. The
input is either trimming curves defined by a set of curve segments
or a set of curveset elements. The kd-tree is built up from the top
downwards. An empty leaf of the kd-tree can be classified as inside
the shape or outside the shape. The full leaf contains the list of trim-
ming curve elements and the initial parity, i.e., odd or even number
of intersections with the boundary for a horizontal ray leftwards.

The surface areas of all full leaf nodes represent the probabil-
ity that the odd-even test by shooting the horizontal ray has to be
executed. Therefore it is natural to optimize the overall cost of the
point location operation simply during the kd-tree build and not in
preprocessing, similar to quadtree in Section 2.3. However, kd-tree
allows for balancing the work using the spatial median only, unlike
the fixed quadtree subdivision. The cost of a search can be formu-
lated for an already built kd-tree a posteriori:

Ctree =
1

SA
(

N

∑
i=1

SAlea f ,i.|Nlea f ,i|Ctest +
N

∑
i=1

SAinner,iCtrav), (2)

where SA is the surface area of the whole 2D space, SAlea f ,i is the
surface area of the i-th leaf bounding box, |Nlea f ,i| is the count of
curves referenced in a leaf, Ctest is the cost of the horizontal ray-
curve intersection test, SAinner,i is the surface area of an interior
node and Ctrav is the cost for traversing the inner node of the tree.
The Ctrav and Ctest include the access time to the data hence it is
important that the memory consumed by the kd-tree is minimized.
This requirement is generally valid for a computer architectures,
but it is difficult or impossible to evaluate the cache behavior, par-
ticularly on a GPU.

The total cost function of kd-tree is similar to the cost function
used in ray tracing in 3D. Still, there are substantial differences,
as the surface area of rectangles given by kd-tree leaves represents
simple geometric probability. The 2D search on kd-tree starts at the
rectangle representing the bounding box and traverses only to the
first leaf during the point location search, assuming the surface is
unoccluded, which would be possible but very costly to evaluate.
Hence, the surface areas for the 2D case exactly represent the ge-
ometric probabilities assuming the uniform distribution of queries.
The cost function for ray tracing uses during kd-tree build the local
greedy approach utilizing a count of objects to balance the work on
both sides of the splitting plane. For the 2D case, there are no ob-
jects, but what represents the cost of the evaluation is the length of
curves on the left and on the right of the splitting plane. In fact, the
computation cost corresponds to the length of the curve segments
in the box.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

(a) (b)

Figure 6: Refinement method (a) base kd-tree K1 (b) refinement of
kd-tree K1 for leaves containing more curves.

The kd-tree is built over some curve elements using the bounding
box, representing curve segments or curvesets. Once the leaves are
created, accessing a full leaf during the search requires the costly
odd-even test computation.

Let us describe several approaches that in practice further de-
crease the computation time for trimming evaluation in ray tracing.
All of them are known but were not used for this problem yet to the
best of our knowledge.

3.1.1. Overlap Minimization

This approach is intended for a kd-tree built over curvesets only.
To minimize the curveset overlaps in the preprocessing phase, we
utilize the simplified approach based on the priority queue [SF19]
as outlined in Section 2.3. In our implementation, the curvesets are
further subdivided only by the maximum overlap area, and there-
fore, the used cost function reduces to the sum of the surface area
of overlaps with other curvesets Ai j:

C(Si) = ∑
j ̸=i

Ai j (3)

The priority queue selects for subdivision the curveset with the
highest cost. We terminate the subdivision process if any further
curveset subdivision leading to a smaller total overlap area is pos-
sible.

3.1.2. Refinement

Once the kd-tree is built, the subdivision of full leaf nodes can be
refined for two reasons. The first reason is the leaf contains two or
more curves/curvesets. The second reason is the leaf surface area is
simply large, and hence it increases the probability of costly odd-
even test usage. The refinement of a simple trimming curve is de-
picted in Figure 6.

A leaf L can be further subdivided using a spatial median along
the longer side of the bounding box. The curves/curvesets associ-
ated with L are distributed to both child nodes according to their
intersection with the bounding boxes of the newly created left child
and right child. The refinement can be done if two conditions are
met. The first condition is based on the relative surface area of L
with respect to the surface area of the whole kd-tree. We use the
threshold ratio rSA = 0.0006. The second condition is length-based;
the leaf cannot be subdivided if the longer side of the bounding box

w

h
o

C C

C

C

N N

Nnew

Nfree

Figure 7: Empty space cutting off: Inserting inner node for leaves
where enough empty space can be cut off. An inner node replaces
the original leaf with one empty leaf and a full leaf with curve C.

of L is too small with respect to the diagonal of the bounding box
of the whole kd-tree. We use the threshold length ratio rl = 0.025.
Both constants rSA = and rl were found by an extensive search per-
formed on the test scenes.

3.1.3. Empty Space Cutting Off

The evaluation cost of full leaves with one curve or curveset can
be further improved by cutting off the empty space, similar to ray
tracing [HB02], as depicted in Figure 7. The largest empty region of
the leaf is found. If its surface area is large enough, compared to the
surface area of the whole leaf, the new inner node is inserted, and
an empty leaf represents the empty space. The criterion to apply
empty space cutting uses the condition o/h > rcuto f f , where o is
the empty space area with respect to the leaf area. We have found
the value of rcuto f f = 0.075 working reasonably for current GPU
architectures by the extensive search over the range of meaningful
values.

3.2. Parallel Boxing

The design of the trimming data structure is driven by the mini-
mization of the computation cost for a point location search inside a
2D boundary representation where the boundary is a set of rational
Bézier curves. The computation cost is given by traversal through
the data structure and intersection tests with curves in full leaves. In
particular, it is costly to compute the ray intersection with a curve
on the GPU as it involves transferring curve data from the mem-
ory to the processing unit. So we searched for a memory-efficient
and computationally simple method that could minimize the count
of such exact odd-even tests. It is straightforward to evaluate the
contribution of any proposed method; we need to reduce the sur-
face areas of leaf regions in the vicinity of curves, where we must
execute the exact and costly computation of the odd-even test.

We have tested several methods to tackle that problem. The result

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

C

CC

d2

d1
d2

d1 = 0

d2

d1

(a) (b) (c)

Figure 8: Parallel boxing over a curve or curveset C in the leaf: (a)
both bounding slabs are at some distance from diagonal, (b) one
bounding slab is the diagonal, (c) the curve does not go through
the corners of the leaf box and the orientation of the diagonal is
different.

of our experimental algorithmics is that one simple yet efficient
method is to use bounding slabs with the orientation given by the
diagonal of a 2D rectangle, as illustrated in Figure 8. The method
efficiently reduces by, geometric bounding, the interval close to the
curve where exact computation must be carried out.

The method was already introduced for ray tracing untrimmed
Bézier patches [YSSP91] in 3D space, but it was not used for trim-
ming curves in 2D space. The diagonal orientation can be com-
puted on the fly from the curve/curveset bounding box coordinates
implicitly represented by curve/curveset data. It does not need to be
stored inside the data, it just requires storing one of the two possi-
ble diagonal orientations and two distances which can be done more
effectively. The unnormalized normal vector (Nx,Ny) for a diago-
nal is easily computed online from a 2D rectangle corresponding
to the curve/curveset bounding box. We only need to compute the
maximum distance from the diagonal to both directions to bound
the curve tightly inside two parallel slabs. Computation can be
done numerically by bisection for an arbitrary Bézier curve using
hodographs of a curve [SW87], which are, in fact, derivatives of the
curve. The signed distance from a point on a curve P = (x(t),y(t))
to a line l : xNx + yNy + c is given by:

d(l,P) =
x(t)Nx + y(t)Ny + c√

N2
x +N2

y

(4)

We search for the extreme distance values on the interval (t1, t2)
of parameter t inside the 2D bounding box. Hence we compute the
first derivate, and after omitting the constants, we get:

d′(l,P) = x′(t)Nx + y′(t)Ny (5)

We then search for all the roots of Eq. 5 in the interval (t1, t2) and
compute their distances to the diagonal. We must also consider the
distances to the diagonal at the ends of the interval (t1, t2). We
take the minimum and maximum distances from the diagonal to
the curve and store them for the rendering phase.

Hodographs can be employed to efficiently find the roots of the
equation above for the Bézier curve. Starting from the hodograph of
the highest degree, we split the interval into possibly two intervals
and recurse to the hodograph of the lower degree. The root-finding
with hodographs can be done either numerically by bisection or by
analytical computation for polynomial functions of low degree. We
use bisection as the evaluation of hodographs is very fast and robust
and works for the arbitrary degree since the hodographs are poly-

nomial functions. We use the algorithm combining the bisection
and symbolic derivatives computation for polynomials [CL76]. It
is guaranteed that this algorithm finds all the roots.

At the end of preprocessing, we have only two values d1 and d2
that specify parallel slabs, so the curve is guaranteed to be bounded
by the slabs, removing the constant c for the diagonal, we can re-
compute the values so that it holds for t ∈ (t1, t2) for any point
x(t),y(t):

x(t)Nx + y(t)Ny ≥ d1 (6)

x(t)Nx + y(t)Ny ≤ d2 (7)

Therefore we can also compute quickly if a point Q = (qx,qy)
is inside the parallel slabs or not, simply by evaluating d(Q) =
qxNx + qyNy and checking if d1 ≥ d(Q) ≥ d2. If Q is inside the
slabs, we have to compute the exact ray-curve odd-even test by
shooting a horizontal ray. Otherwise, we know according to the di-
agonal orientation that has to be evaluated whether the Q is on the
left or on the right of the slab, which gives an immediate result.

In addition to the diagonal orientation, it is important to effi-
ciently store the precomputed values d1 and d2. We use 4 Bytes
(32 bits) for both values, 15 bits for each value, taken relative to
the longer side of the bounding box. One bit is used to store the
orientation of the diagonal (bottom left to top right corner of from
left top corner to right bottom corner), and one bit is unused. These
4 Bytes can be stored directly inside the bounding box for all the
curves and curvesets. The memory requirement for the introduced
bounding parallel slab is very small, and in addition, it is stored in
otherwise unused data given by the necessity of padding values in
data structure arrays on the GPU.

4. Implementation

The implementation of the above-described algorithms for ray trac-
ing of trimmed NURBS was designed in mind with the GPU archi-
tecture. We are not going deep into the implementation details on
GPU. Instead, we refer to the two theses [Val10, Car16] on that
topic where the implementation choices and their justification can
be found. Our implementation has been done from scratch, not us-
ing any ray tracing API, and follows the mentioned theses and cur-
rent implementation recommendations for a GPU. The used mem-
ory layout for trimming curves and trimming data structure is de-
scribed in the supplementary material.

We have decided not to implement the method using quadtree
with the spatial median subdivision [CVB∗12] as it is an approxi-
mate method not comparable with other tested approaches. For the
same reason we have also not implemented other rendering meth-
ods, including tessellation-based and hybrid methods.

The input scene file is parsed and preprocessed on the CPU
in ANSI C++. All the data structures required to represent the
NURBS surfaces and curves are first precomputed on a CPU, in-
cluding the conversion from NURBS surfaces and curves to their
rational Bézier equivalents. Then the system transfers the prepared
data from the main memory into a GPU memory and launches ray
tracing on the GPU.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

5. Results

Below we describe the testing scenes, the testing methodology, and
results in summary. The figures and numerical evaluation of test-
ing in detail can be found in the supplementary material for all the
important issues: memory consumption, preprocessing time, per-
formance, and the hardware independent measures; reduction of
odd-even trim tests and traversal steps through the data structure.

5.1. Test Scenes

The ten scenes used for the testing of the algorithms are depicted in
Figure 1, while Table 1 surveys their properties. All the used scene
datasets are publicly available. They contain only the trimmed
NURBS surfaces, and there is no simple triangle. To properly
evaluate the algorithms, we also included two large-scale scenes
(LegoX22 and IS4X8) created in Rhinoceros 3D software by du-
plicating several models in space without instantiating objects by a
reference.

5.2. Test Hardware and Methodology

The computer for testing was equipped with CPU Intel I9-10900X
with 10 cores and 19.25GB L2 cache, and 128GB DDR3 RAM. For
evaluation we used two GPUs, NVIDIA RTX 2080 Ti with 11GB
RAM and NVIDIA RTX 3090 with 24GB RAM. We used NVIDIA
driver 460.93 on MS Windows 10.0.18363 SR0.0 and CUDA 11.2.

To evaluate each measurement on a GPU properly, the tests were
initiated by running 5 times the rendering of a single frame to
warm up the GPU and then rendering the same frame 15 times.
The smallest recorded running real-time from the 15 measurements
is reported. There were outliers for running times of the frames
due to the operating system behavior. Using median value or aver-
age/median value appeared to have a much higher fluctuation than
taking the minimum time.

We have used two settings for computing images: (a) for real-
time rendering, shown in accompanying videos, four primary rays
per pixel in FullHD image resolution (1920×1080) and (b) 4K
UHDTV resolution (3840×2160 pixels) with eight rays per pixel,
resulting in 66.36×106 primary rays in a single frame.

The last setting (c) shoots 66.36× 106 rays randomly through
the sphere enclosing the tight bounding box of the scene geometry,
with the constant spatial density of rays. The random rays are gen-
erated on the fly directly on the GPU, using the Halton generator
of bases 2, 3, 5, and 7. That results in a pretty uniform distribution
of rays in space while the rays are very incoherent. This method is
well reproducible and independent of the camera setting or render-
ing algorithm with incoherent rays such as path tracing or ambient
occlusion.

5.3. Comparing Basic Trimming Algorithms with the New
Ones

We have tested many variants for settings of kd-trees for trimming
for the proposal of the above-described algorithms. The kd-tree is
built either on curves or curvesets. The curvesets are formed by
joining the subsequent curve elements while preserving the same

monotonicity. We selected only the three basic algorithms allow-
ing exact computation of results; without trimming data structure
(used for example in [MCFS00]), the method with horizontal slabs
described in section 2.2, and the method proposed with kd-trees
for rasterization with antialiasing [SF19] described in the previous
section.

The tested methods systematically exploit all the combinations
of basic methods either for curves or curvesets: parallel boxing (de-
noted by B) in Section 3.2, empty space cutting off (denoted by E)
in Section 3.1.3, refinement (denoted by R) in Section 3.1.2, and for
curvesets, the overlap minimization (denoted by M) in preprocess-
ing Section 3.1.1 is also considered. It leads in total to 8+16 combi-
nations to be tested with kd-trees. The methods used to improve the
kd-tree are not orthogonal, so their combined improvement is not
simply the sum of improvements achieved individually. The legend
for individual methods is given in Table 2. We also show the results
for the queries saved to the array in the preprocessing and evalu-
ated without ray tracing (BVH traversal and base NURBS surface
intersection), which show that the best algorithmic variants could
be approximately two times faster than a reference algorithm.

The detailed quantitative results are reported in the supplemen-
tary material for all the methods and scenes, including shooting
primary and random rays for both tested GPUs. Tables include the
preprocessing time, total memory consumption, memory consump-
tion by trimming curves and data structures, the average number of
traversal steps through the data structure, and the average count of
exact odd-even tests needed per query. The ray tracing performance
is given for two GPUs (NVIDIA RTX 2080 Ti and NVIDIA RTX
3090). Table 3 shows only the summary results averaged over all
ten scenes.

In addition, we studied the dependence of the running time on
the order of trimming curves. Because we had not very complex
scenes with higher-order trimming curves common in industrial
models, we decided to overcome this limitation by implementing
a curve degree elevation algorithm described by the book of Piegl
and Tiller [PT95, Section 5.2]. The algorithm increases the curve
degree by generating new control points while the curve shape does
not change. Both NURBS and rational Bézier curve versions were
implemented, but we decided to use simpler degree elevation on
rational Bézier curves due to the better numerical stability. The de-
pendence of the computation time on the increased trimming curves
order is shown in Figure 9.

Figure 10 shows visualization for 7 out of 29 methods by the
data structures for three 2D curves and the impact on the odd-even
tests reduction for scene Nissan. The complete visualization set for
all the 29 methods can be found in the supplementary.

6. Discussion

New trimming algorithms based on kd-trees show better perfor-
mance than the previously published algorithms while they require
less memory and less preprocessing time. The space for improve-
ments depends on the trimming curves count and the order of trim-
ming curves. We believe that the implementation is relatively effi-
cient, based on the estimation that about a third of the running time
is needed to traverse the BVH. The exact profiling on a GPU was
virtually impossible as the implementation is one megakernel.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

Scene N[−] NB[−] NT H [−] NNC[−] NBC[−] NBCDx103 NT S NIT NHST Scov[%]
Robot 6756 12238 7445 37328 33775 1:18 2:5 3:11 22.35 4.65 4.86 51.51
Bike 12611 90396 12955 64372 176922 1:17 2:12 3:148 18.29 6.90 2.27 22.76
Eiffel 14880 17829 16691 133238 126921 1:88 2:1 3:38 12.99 2.76 7.23 20.82
Egoist 19706 159088 22918 115146 154081 1:48 2:33 3:73 28.54 15.96 7.80 18.48
Tank 48248 109832 50787 265630 206729 1:113 2:48 3:46 25.50 4.54 4.94 47.52
Engine 61724 233096 67014 314462 353738 1:122 2:48 3:184 30.29 11.52 5.97 37.30
Nissan 62463 665093 75492 346536 493586 1:136 2:65 3:293 57.04 16.31 7.83 56.75
Lego 153181 448626 170193 834907 822328 1:307 2:239 3:276 34.04 11.50 5.35 33.58
LegoX22 1862486 5369063 2061252 10083206 9876872 1:3739 2:2840 3:3297 63.32 23.20 7.07 46.47

IS4X8 514476 15859094 567946 2618992 6506071 1:692 2:304 3:5475 23.73 2.94 3.42 43.424:34 5:480

Table 1: The properties of test scenes used for measurement, the camera viewpoints correspond to images in the paper. N - count of
NURBS surfaces, NB - count of Bézier patches converted from NURBS surfaces, NT H - count of trimming holes, NNC - count of NURBS
trimming curves, NBC - count of Bézier trimming curves after conversion from NURBS trimming curves, NBCD - Bézier trimming curves
degree distribution, NT S - traversal steps per ray through BVH, NIT - intersection tests per ray through BVH (also ray-Bézier surface test
per ray), NHST - successful Bézier surface intersection tests per ray, ST - screen coverage ratio in percents.

The kd-tree proposed in [SF19] (row 13-KCS[SF19]) was de-
signed for tessellation with antialiasing for the classification of
fragment coordinates. The algorithm was not directly proposed and
tested for ray tracing. This explains the relatively low performance
of that method and a similar version of our method as many leaves
contain trimming curves (row 13-KCS in Tables).

The method with horizontal slabs is relatively memory demand-
ing, compared to the kd-tree implementation, but yields good im-
provements against a naive method without any data structure by
about 20%. Note that both naive and horizontal slab methods can
also be improved by parallel boxing roughly by 5% on average.

The increase of trimming curve order shown in Figure 9 reveals
that the trimming can quickly become the major part of the whole
computation time, supposing the trimming is used extensively dur-
ing CAD modeling together with the higher-order curves. It is the
most apparent for scene Eiffel, where the best performance im-
provement across all methods in order of 25% was achieved. The
advantageous property of the parallel boxing method is that the
strong reduction of odd-even tests decreases the computation time
for all the methods and can stabilize rendering performance for
higher-order trimming curves.

To improve the speed of the trimming algorithm, we need to sac-
rifice some memory and preprocessing time, but carefully, because
building deep kd-trees for trimming would only a slow down the
whole computation. All the four basic methods (refinement, par-
allel boxing, empty space cutting off, and overlap minimization)
show on the kd-tree some improvement separately, which is re-
ported in Table 3.

The performance when shooting random rays is about half of
that measured when shooting primary rays for both GPU architec-
tures. The performance of kd-trees with curvesets compared to the
kd-tree with curves only is only slightly higher for shooting random
rays on NVIDIA RTX 2080 Ti. The parallel boxing is the most ef-
ficient of all four methods improving kd-trees, it brings the best
improvement alone for little increase of memory usage and prepro-
cessing time. The reduction of odd-even tests by a factor of 10× on
average is significant and results in total performance improvement
by 8% on average. Suppose we would consider the timing for only

trimming separately, that takes on average roughly 12% of running
time, the new data structure reduces the trimming running time by
at least 50% on average. This becomes even more significant with
trimming curves of higher order.

7. Limitations

Our technique could be considered similar to the older work on
strip trees [Bal81] and arc trees [GW90] that allow us to represent
even crossing curves. These two data structures were designed for
all the algorithms on 2D shapes, including the intersection of curves
and areas, and are not optimized for point location search. In con-
trast, our method is highly optimized for a point-in-shape test and
does not allow other operations as described for strip trees and arc
trees.

8. Conclusions

In this paper we have dealt in depth with the ray tracing of trimmed
NURBS surfaces using their conversion to Bézier primitives. We
have presented two main methods for evaluating trimming in the
2D domain (kd-tree based algorithms with three different improve-
ments) and general parallel boxing that can also be used in other
data structures. The proposed algorithmic ideas were implemented,
optimized, and tested on a GPU. We show the total ray tracing per-
formance can be improved on average by 5 to 8 percent and max-
imally by 20 to 25 percent depending on the scene. We have also
studied the performance dependence on the coherence of rays and
the degree of trimming curves. We show that increasing the de-
gree of trimming curves may significantly raise the running time of
previously published algorithms for trimming evaluation, while our
proposed approaches guarantee only a small slowdown. It gives a
high potential for the application of our approach in practice.

The tested geometric datasets include large-scale models that
current engineering software might have a problem to process and
visualize. It is a pity since the trimmed NURBS models provide
much higher shape expressive power than triangles for curved sur-
faces. Based on the reported absolute performances on the GPU,
and the shape complexity of tested NURBS scenes, we believe that

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

1-LC list of curves only [MCFS00]
2-LC+B list of curves only [MCFS00] + parallel boxing (section 3.2)
3-HS[SF09] horizontal slabs [SF09] . . . reference method
4-HS+B reference method HS [SF09] + parallel boxing
5-KC kd-tree on curves
6-KC+R kd-tree on curves + refinement in leaves (section 3.1.2)
7-KC+B kd-tree on curves + parallel boxing (section 3.2)
8-KC+E kd-tree on curves + empty space cutting off (section 3.1.3)
9-KC+RB kd-tree on curves + refinement in leaves + parallel boxing
10-KC+RE kd-tree on curves + refinement in leaves + empty space cutting off
11-KC+BE kd-tree on curves + parallel boxing + empty space cutting off
12-KC+RBE kd-tree on curves + refinement in leaves + parallel boxing + empty space cutting off
13-KCS[SF19] kd-tree on curvesets according to [SF19]
14-KCS kd-tree on curvesets
15-KCS+R kd-tree on curvesets + refinement in leaves
16-KCS+B kd-tree on curvesets + parallel boxing
17-KCS+E kd-tree on curvesets + empty space cutting off
18-KCS+M kd-tree on curvesets + overlap minimization (section 3.1.1)
19-KCS+RB kd-tree on curvesets + refinement in leaves + parallel boxing
20-KCS+RE kd-tree on curvesets + refinement in leaves + empty space cutting off
21-KCS+RM kd-tree on curvesets + refinement in leaves + overlap minimization
22-KCS+BE kd-tree on curvesets + parallel boxing + empty space cutting off
23-KCS+BM kd-tree on curvesets + parallel boxing + overlap minimization
24-KCS+EM kd-tree on curvesets + empty space cutting off + overlap minimization
25-KCS+RBE kd-tree on curvesets + refinement in leaves + parallel boxing + empty space cutting off
26-KCS+RBM kd-tree on curvesets + refinement in leaves + parallel boxing + overlap minimization
27-KCS+REM kd-tree on curvesets + refinement in leaves + empty space cutting off + overlap minimization
28-KCS+BEM kd-tree on curvesets + parallel boxing + empty space cutting off + overlap minimization
29-KCS+RBEM kd-tree on curvesets + refinement in leaves + parallel boxing + empty space cutting off

+ overlap minimization
Table 2: Legend to the methods reported in Tables 3 and tables in the supplementary material.

Average 2080 Ti 3090 2080 Ti 3090 Prepr. Mem Trim Mem Trim ˜Per f T ˜Per f T
values primary primary random random time total tests trim trav primary random
(all scenes) rays rays rays rays (CPU) (GPU) (GPU) steps trims/s trims/s
Reference Mrays

sec
Mrays

sec
Mrays

sec
Mrays

sec sec MBytes Ntest MBytes Ntrav
Mtrims

sec
Mtrims

sec
Abs values 234.52 353.96 112.42 157.62 22.61 1174 0.168 153.1 – 6714 2296

[%] [%] [%] [%] [%] [%] [%] [%] [-] [%] [%]
1-LC -23.38 -20.29 -19.19 -17.52 -34.00 -37.05 +77.76 +0.00 1.00 -72.28 -73.27
2-LC+B -16.39 -17.00 -15.88 -15.75 -29.25 -37.05 -70.61 +0.00 1.00 -67.62 -70.16
3-HS[SF09] +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +193.24 1.57 +0.00 +0.00
4-HS+B +5.60 +2.95 +1.12 +1.10 +9.93 +6.72 -84.35 +227.12 1.57 +25.71 +11.16
5-KC -1.14 +0.46 +0.43 +1.11 -4.32 -34.00 +66.50 +18.51 3.50 -4.20 +43.63
6-KC+R +2.61 +2.27 +2.89 +2.25 +20.99 -16.44 -27.12 +94.83 4.12 +17.30 +66.15
7-KC+B +5.98 +4.42 +3.42 +3.22 -0.61 -34.25 -71.25 +17.19 3.46 +40.30 +94.38
8-KC+E -0.12 +1.10 +1.42 +1.73 +1.82 -32.93 +31.66 +23.36 3.61 -4.15 +50.76
9-KC+RB +7.16 +4.77 +3.81 +3.45 +16.98 -22.29 -80.78 +69.89 3.89 +50.74 +102.66
10-KC+RE +4.91 +3.42 +4.39 +3.15 +68.75 -15.00 -67.06 +100.83 4.09 +29.16 +86.48
11-KC+BE +6.28 +4.63 +3.73 +3.35 +5.02 -33.24 -74.16 +21.76 3.57 +42.85 +97.15
12-KC+RBE +8.05 +5.41 +4.40 +3.71 +61.90 -19.38 -89.18 +81.92 3.98 +65.94 +119.85
13-KCS[SF19] -0.15 -0.06 +0.77 +0.81 +12.53 -33.65 +77.90 +17.87 3.39 -10.68 +30.54
14-KCS -0.30 -0.14 +0.43 +0.75 -19.57 -34.71 +70.40 +12.11 3.24 -10.33 +30.82
15-KCS+R +2.38 +1.46 +2.09 +1.48 -8.20 -28.45 +12.69 +39.80 3.62 +4.03 +50.18
16-KCS+B +5.12 +4.08 +3.81 +2.96 -11.98 -34.95 -71.35 +10.95 3.19 +22.84 +76.71
17-KCS+E +0.18 +0.32 +1.28 +1.20 -14.57 -33.79 +43.33 +16.25 3.39 -9.52 +32.90
18-KCS+M +0.34 +0.08 +0.95 +1.00 +10.55 -33.79 +66.62 +17.20 3.39 -10.78 +34.52
19-KCS+RB +6.83 +4.71 +4.30 +3.26 -3.55 -29.49 -78.33 +34.64 3.57 +35.61 +88.49
20-KCS+RE +4.34 +2.78 +3.82 +2.51 +29.27 -22.46 -39.29 +65.42 3.85 +15.20 +63.09
21-KCS+RM +2.51 +1.55 +2.29 +1.75 +19.79 -29.14 +15.09 +37.40 3.64 +6.34 +55.50
22-KCS+BE +5.84 +4.44 +4.10 +3.18 -7.48 -34.06 -73.18 +14.89 3.33 +25.25 +79.47
23-KCS+BM +5.73 +4.23 +4.16 +3.26 +17.74 -34.66 -71.33 +12.54 3.27 +29.88 +84.76
24-KCS+EM +1.18 +0.69 +1.92 +1.54 +15.91 -32.74 +32.51 +21.91 3.50 -7.83 +39.12
25-KCS+RBE +7.92 +4.96 +5.04 +3.58 +28.20 -23.55 -84.93 +60.06 3.80 +45.63 +98.37
26-KCS+RBM +7.14 +4.68 +4.69 +3.31 +24.09 -30.07 -78.03 +32.28 3.56 +40.01 +96.30
27-KCS+REM +4.38 +2.73 +4.00 +2.54 +49.05 -24.38 -38.15 +57.55 3.81 +16.53 +68.70
28-KCS+BEM +6.20 +4.57 +4.52 +3.31 +22.33 -33.71 -74.13 +16.79 3.40 +30.54 +87.67
29-KCS+RBEM +7.89 +5.10 +5.18 +3.67 +53.77 -24.77 -85.06 +54.90 3.75 +47.66 +104.67

Table 3: The performance for primary and random rays for two GPU architectures averaged for all ten test scenes. Hardware and im-
plementation independent values are Ntest in the 8th column, showing the reduction of exact odd-even tests by shooting horizontal ray and
Ntrav with the average number of traversal steps through the trimming data structure per trimming test. Absolute values are reported for
the reference method 3-HS[SF09] except the 9th column with a memory consumption that uses as reference the method 1−LC, without any
data structure. Values in the last two columns ˜Per f T show performance for only trimming without BVH traversal and base intersection. The
absolute values are shown in the 5th row.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

 0

 20

 40

 60

 80

 100

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Eiffel - total run time increase [%]

 0

 20

 40

 60

 80

 100

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Eiffel - total run time increase [%]

 0

 20

 40

 60

 80

 100

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Eiffel - total run time increase [%]

 0

 20

 40

 60

 80

 100

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Eiffel - total run time increase [%]

 0

 20

 40

 60

 80

 100

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Eiffel - total run time increase [%]

 0

 20

 40

 60

 80

 100

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Eiffel - total run time increase [%]

 0

 20

 40

 60

 80

 100

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Eiffel - total run time increase [%]

 0

 20

 40

 60

 80

 100

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Eiffel - total run time increase [%]

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Nissan - total run time increase [%]

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Nissan - total run time increase [%]

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Nissan - total run time increase [%]

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Nissan - total run time increase [%]

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Nissan - total run time increase [%]

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Nissan - total run time increase [%]

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Nissan - total run time increase [%]

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Nissan - total run time increase [%]

 0

 5

 10

 15

 20

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

 0

 5

 10

 15

 20

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

 0

 5

 10

 15

 20

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

 0

 5

 10

 15

 20

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

 0

 5

 10

 15

 20

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

 0

 5

 10

 15

 20

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

 0

 5

 10

 15

 20

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

 0

 5

 10

 15

 20

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]
LC

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%] LC+B

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

HS[SF09]

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

HS+B

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

KC

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

KC+B

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

KCS

 0

 5

 10

 15

 20

 25

 30

 0 3 5 7 9 12 15

R
un

 ti
m

e
in

cr
ea

se
[%

]

Curve order increase

Lego - total run time increase [%]

KCS+B

Figure 9: The running time dependence on the order of trimming curves for scene Eiffel, Nissan, and Lego. Four basic methods were tested
(1-LC, 3-HS, 5-KC, 14-KCS) plus the same methods improved by parallel boxing (2-LC+B, 4-HS+B, 6-KC+B, 15-KCS+B). The parallel
boxing makes the runtime less independent on the curve order.

ray tracing could be used in common computer graphics applica-
tions where the global illumination algorithms are needed, includ-
ing common CAD tools used in the engineering domain. It will be-
come even more apparent with the new generation of faster GPUs
coming in the future.

In future work we plan to focus on other ways to improve the per-
formance of computing the ray intersection with the base NURBS
surface as it takes half of the computation time and represents the
biggest challenge in ray tracing trimmed NURBS surfaces.

Acknowledgements

The authors acknowledge the support of the OP VVV MEYS
funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research
Center for Informatics”. We would like to thank GrabCAD com-
munity for exposing many trimmed NURBS models.

References
[Bal81] BALLARD D. H.: Strip Trees: A Hierarchical Representation for

Curves. Commun. ACM 24, 5 (May 1981), 310–321. 9
[Ben06] BENTHIN C.: Realtime ray tracing on current CPU architec-

tures. PhD thesis, Saarland University, Saarbrücken, Germany, 2006. 2,
4

[BHH13] BITTNER J., HAPALA M., HAVRAN V.: Fast Insertion-Based
Optimization of Bounding Volume Hierarchies. Computer Graphics Fo-
rum 32, 1 (2013), 85–100. 2

[BWN∗15] BENTHIN C., WOOP S., NIESSNER M., SELGRAD K.,
WALD I.: Efficient Ray Tracing of Subdivision Surfaces Using Tes-
sellation Caching. In Proceedings of the 7th Conference on High-
Performance Graphics (New York, NY, USA, 2015), HPG ’15, Asso-
ciation for Computing Machinery, p. 5–12. 2

[Car16] CARLIE M.: Ray Tracing Non-Polygonal Objects: Implementa-
tion and Performance Analysis using Embree, 2016. 7

[CL76] COLLINS G. E., LOOS R.: Polynomial Real Root Isolation by
Differentiation. In Proceedings of the Third ACM Symposium on Sym-
bolic and Algebraic Computation (New York, NY, USA, 1976), SYM-
SAC ’76, Association for Computing Machinery, p. 15–25. 7

[CVB∗12] CLAUX F., VANDERHAEGHE D., BARTHE L., PAULIN M.,
JESSEL J. P., CROENNE D.: An Efficient Trim Structure for Rendering
Large B-Rep Models. In 17th International Workshop on Vision, Model-
ing and Visualization (VMV 2012) (Magdebourg, Germany, Nov. 2012),
Goesele M., Grosch T., Theisel H., Toennies K., Preim B., (Eds.), The
Eurographics Association. 5, 7

[GBK05] GUTHE M., BALÁZS A., KLEIN R.: GPU-based trimming and
tessellation of NURBS and T-Spline surfaces. ACM Trans. Graph. 24, 3
(July 2005), 1016–1023. 2

[GMK02] GUTHE M., MESETH J., KLEIN R.: Fast and Memory Effi-
cient View-Dependent Trimmed NURBS Rendering. In Pacific Confer-
ence on Computer Graphics and Applications (2002), pp. 204–213. 2

[GW90] GÜNTHER O., WONG E.: The arc tree: An approximation
scheme to represent arbitrary curved shapes. Computer Vision, Graphics,
and Image Processing 51, 3 (1990), 313–337. 9

[HB02] HAVRAN V., BITTNER J.: On Improving KD-Trees for Ray
Shooting. Journal of WSCG 10, 1 (February 2002), 209–216. 6

[LCCZ16] LIU Y., CAO J., CHEN Z., ZENG X.: Ray-triangular Bézier
patch intersection using hybrid clipping algorithm. Frontiers Inf. Tech-
nol. Electron. Eng. 17, 10 (2016), 1018–1030. 5

[MCFS00] MARTIN W., COHEN E., FISH R., SHIRLEY P.: Practical
Ray Tracing of Trimmed NURBS Surfaces. J. Graph. Tools 5, 1 (Jan.
2000), 27–52. 2, 3, 8, 10, 12

[MH18] MARUSSIG B., HUGHES T. J. R.: A Review of Trimming in
Isogeometric Analysis: Challenges, Data Exchange and Simulation As-
pects. Archives of Computational Methods in Engineering 25, 4 (Nov
2018), 1059–1127. 1

[MSW19] MCGUIRE M., SHIRLEY P., WYMAN C.: Introduction to
Real-Time Ray Tracing. In ACM SIGGRAPH 2019 Courses (New York,
NY, USA, 2019), SIGGRAPH ’19, Association for Computing Machin-
ery. 2

[PT95] PIEGL L., TILLER W.: The NURBS book. Springer-Verlag, 1995.
1, 2, 3, 8

[SCF∗04] SEDERBERG T. W., CARDON D. L., FINNIGAN G. T.,
NORTH N. S., ZHENG J., LYCHE T.: T-Spline Simplification and Local
Refinement. ACM Trans. Graph. 23, 3 (Aug. 2004), 276–283. 1

[SF09] SCHOLLMEYER A., FRÖHLICH B.: Direct Trimming of NURBS
Surfaces on the GPU. In ACM SIGGRAPH 2009 Papers (New York, NY,
USA, 2009), SIGGRAPH ’09, Association for Computing Machinery. 3,
10, 12

[SF19] SCHOLLMEYER A., FROEHLICH B.: Efficient and Anti-Aliased
Trimming for Rendering Large NURBS Models. IEEE Trans Vis Comput
Graph 25, 3 (Mar 2019), 1489–1498. 4, 5, 6, 8, 9, 10, 12

[SFL∗08] SEDERBERG T. W., FINNIGAN G. T., LI X., LIN H., IPSON
H.: Watertight Trimmed NURBS. ACM Trans. Graph. 27, 3 (Aug.
2008), 1–8. 1

[Shi62] SHIMRAT M.: Algorithm 112: Position of Point Relative to Poly-
gon. Commun. ACM 5, 8 (Aug. 1962), 434. 3

[SKSD14] SHEN J., KOSINKA J., SABIN M. A., DODGSON N. A.: Con-
version of trimmed NURBS surfaces to Catmull–Clark subdivision sur-
faces. Computer Aided Geometric Design 31, 7 (2014), 486–498. Recent
Trends in Theoretical and Applied Geometry. 5

[SSZ∗04] SONG X., SEDERBERG T. W., ZHENG J., FAROUKI R. T.,
HASS J.: Linear perturbation methods for topologically consistent repre-
sentations of free-form surface intersections. Computer Aided Geometric
Design 21, 3 (2004), 303–319. 2

[SW87] SEDERBERG T. W., WANG X.: Rational hodographs. Computer
Aided Geometric Design 4, 4 (1987), 333–335. 7

[Val10] VALKERING E.: Ray Tracing NURBS Surfaces using CUDA,
2010. 7

[WHG84] WEGHORST H., HOOPER G., GREENBERG D. P.: Improved
Computational Methods for Ray Tracing. ACM Trans. Graph. 3, 1 (Jan.
1984), 52–69. 2

[WP15] WU R., PETERS J.: Correct resolution rendering of trimmed
spline surfaces. Computer-Aided Design 58 (2015), 123–131. Solid and
Physical Modeling 2014. 5

[YSSP91] YEN J., SPACH S., SMITH M. T., PULLEYBLANK R. W.: Par-
allel boxing in B-spline intersection. IEEE Computer Graphics and Ap-
plications 11, 1 (1991), 72–79. 7

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

J. Sloup & V. Havran / Optimizing Ray Tracing of Trimmed NURBS Surfaces on the GPU

1-LC – list of curves only [MCFS00]

2-LC+B – list of curves only [MCFS00] + parallel boxing (section 3.2)

3-HS – reference method HS [SF09]

4-HS+B – reference method HS [SF09] + parallel boxing

12-KC+RBE – kd-tree on curves + refinement in leaves + parallel boxing + empty space cutting off

13-KCS[SF19] – kd-tree on curvesets according to [SF19]

29-KCS+RBEM – kd-tree on curvesets + refinement in leaves + parallel boxing +
empty space cutting off + overlap minimization

20

0

Figure 10: The visualizations present the trimming data structures for selected algorithms on three sets of trimming curves and the reduction
in the number of odd-even tests on the Nissan scene. The pseudo-color palette used for color mapping of right column images is shown on
the right side and maps on the scale black (0) to red (20 or more) to the number of odd-even tests per pixel. The first three columns use gray
color to show the leaves where the odd-even tests must be carried out, green and red regions show bounding by parallel boxing at the level
of curve and curveset elements.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

