Volume 0 (1981), Number 0 pp. 1-13

Performance Comparison of Bounding Volume Hierarchies
and Kd-trees for GPU Ray Tracing

Marek Vinkler!! Vlastimil Havran® Jiff Bittner?

Faculty of Informatics, Masaryk University, Czech Republic
2Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

Abstract

We present a performance comparison of bounding volume hierarchies and kd-trees for ray tracing on many-core
architectures (GPUs). The comparison is focused on rendering times and traversal characteristics on the GPU
using data structures that were optimized for very high performance of tracing rays. To achieve low rendering
times we extensively examine the constants used in termination criteria for the two data structures. We show that
for a contemporary GPU architecture (NVIDIA Kepler) bounding volume hierarchies have higher ray tracing
performance than kd-trees for simple and moderately complex scenes. On the other hand, kd-trees have higher
performance for complex scenes, in particular for those with high depth complexity. Finally, we analyze the causes

COMPUTER GRAPHICS forum

of the performance discrepancies using the profiling characteristics of the ray tracing kernels.

Keywords: ray tracing, performance comparison, object-partitioning, space-partitioning, GPU

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing 1.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data
structures and data types 1.3.1 [Computer Graphics]: Hardware architecture—Parallel processing

1. Introduction

Solving visibility by ray tracing stands at the core of a
number of rendering algorithms, particularly those aiming
at computing global illumination. The efficiency of the ray
tracing algorithm has significant influence on the total ren-
dering time, and thus much research work has been devoted
to ray tracing optimization. The main factors influencing the
ray tracing performance are the properties and the organiza-
tion of data structures which spatially index the scene geom-
etry with the aim to reduce the number of operations needed
to find ray-primitive intersections. Over the past decades two
acceleration data structures became prominent for this task:
bounding volume hierarchies (BVHs) and kd-trees. These
two data structures have been compared against each other a
few times on different computer architectures. Due to the de-
velopment of parallel many-core architectures and more op-
timized algorithms most of these studies are now outdated.

T xvinkl @fi.muni.cz

(© 2015 The Author(s)
Computer Graphics Forum (©) 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

In this paper we compare the ray tracing performance of
these acceleration data structures irrespective of their build
times, therefore targeting offline rendering algorithms and/or
static scenes. For these applications the time of building
the data structure is insignificant compared to the rendering
time.

2. Related Work

Below we present shortly the most relevant work related to
the data structures tested and evaluated in our paper and the
performance studies comparing the two data structures.

BVHs. The bounding volume hierarchies [WHG84] have
been recently studied in the context of ray traversal ef-
ficiency and build algorithms on the GPU. Kopta et
al. [KIS*12] focused on fast updates during animation while
keeping high traversal efficiency. Bittner et al. [BHH13] and
Karras and Aila [KA13] both target improvement of qual-
ity of the already built BVHs. The method of Bittner et al.
runs on a CPU and produces highest quality BVH, while

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

the method of Karras and Aila runs on a GPU and produces
slightly lower quality trees, but in significantly less time.
The factors influencing the BVH traversal times on many-
core processors were analyzed by Aila et al. [AKL13], and
Guthe [Gutl4] gave some reasons to understand the discrep-
ancy between the surface area heuristic (SAH) cost [GS87]
and the measured performance. Gu et al. [GHFB13] pre-
sented a method for building BVHs using agglomerative
clustering that allows for setting a trade-oft between build
time and traversal efficiency.

Kd-trees. The kd-trees introduced to ray tracing by Ka-
plan [Kap85] have been recently studied in the con-
text of parallelization of the building algorithm on both
CPUs [CKL*10, RPCI12] and GPUs [DPS10, WZLI11,
RPC12]. Choi et al. [CKL*10] focused on accelerating
SAH kd-tree build algorithm on multi-core CPUs. To sim-
plify the parallelization they omitted split clipping [HB02]
from the method, which resulted in lower quality trees.
Danilewski et al. [DPS10] presented a scalable build algo-
rithm with binning for building SAH kd-trees on GPUs.
Wu et al. [WZL11] moved the entire kd-tree build algo-
rithm of Wald and Havran [WHO6] including split clipping
to the GPU, significantly accelerating the algorithm. A hy-
brid CPU-GPU implementation of the same baseline algo-
rithm was proposed by Roccia et al. [RPC12], that outper-
formed the previous approaches.

Hybrid hierarchies. Wichter and Keller [WKO06] proposed
a data structure (BIH) that uses two splitting planes per node.
In BIH all primitives lie completely in either the left or right
child and thus the costly duplication of primitives straddling
the splitting plane is prevented. Stich et al. [SFD09] pre-
sented another hybrid data structure (SBVH) that keeps the
hierarchy of bounding volumes as in BVH, but allows for
splitting primitives into smaller ones as in kd-tree. This pre-
vents large overlaps of bounding volumes and thus increases
the rendering performance.

Performance studies. The efficiency of acceleration data
structures for ray tracing was compared in several studies.
Havran [Hav00] formulated hardware independent measures
and studied properties of twelve acceleration data structures.
He concluded at that time (year 2000), that kd-trees have
the highest ray traversal performance on average from all
the data structures tested for static scenes on CPUs. Another
comparison study by Masso and Lopez [MLO03] showed sim-
ilarly to Havran [Hav00] that BVHs built up by insertion us-
ing the algorithm of Goldsmith and Salmon [GS87] are sig-
nificantly worse than top-down built kd-trees. On the GPUs
data structures for ray tracing were compared by Zlatuska
and Havran [ZH10]. Their study targeted older GPU hard-
ware (GTX 280 and 8600GT) of year 2007/8 and showed
that the BVHs are the fastest for coherent rays, while the
kd-trees are the fastest for incoherent rays.

The utility of dynamic data structures proposed for animated
scenes were surveyed by Wald et al. [WMG™*09]. In the sur-

vey the authors suggest that kd-trees are not efficient for dy-
namic scenes because of their slow rebuild and propose to
use uniform grids or BVHs depending on the distribution of
primitives in the scene. This survey, however, lacks a direct
quantitative performance comparison of the discussed meth-
ods.

3. Data Structures

We build the two data structures, a binary BVH and a bi-
nary kd-tree, fully on the GPU using the algorithm of Vin-
kler et al. [VBHH13] which is integrated with the frame-
work of Aila and Laine [AL09]. We have further extended
this framework with GPU code for traversing kd-trees. The
kd-tree traversal kernel is organized similarly to the BVH
traversal kernel in the while-while layout [AL09] and with
the same triangle intersection test. We also build the hybrid
SBVH on the CPU for comparison.

Left AABB Right AABB Left offset | Right offset Padding
(24 B) (24 B) (4B) (4B) (8B)
node

left ! left !
array : :

HEEEEEN

triangle
reference array
(12B)

Figure 1: Memory and node layout of BVHs used in our
measurements. For BVHs the triangle data array is accessed
directly by the traversal algorithm. The leaf is terminated
with a stop mark (black rectangle in the figure). The BVH
node takes 64 bytes: 24 bytes for each of the children axis-
aligned bounding boxes (AABB), two 4 byte offsets to the
left and right children and a 8 byte padding.

triangle
data array B
(48B)

3.1. BVHs

Build algorithm. We build the BVHs with the surface area
heuristic (SAH) used for subdividing inner nodes and for
automatic termination of the subdivision. The SAH cost is
evaluated in each node for a fixed set of candidate planes
(binning). The best splitting plane according to SAH is cho-
sen from 32 splitting plane candidates uniformly distributed
inside the bounding box of a node in all three axes (11 planes
parallel to the x-axis, 11 planes parallel to the y-axis, and 10
planes parallel to the z-axis). If all 32 candidate planes fail
to subdivide the geometric primitives into two non-empty
parts, the primitives are subdivided into two equally sized
parts. The fixed number of candidate planes is chosen to fit

(© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

the warp size on the current generation of GPUs, thus allow-
ing for efficient implementation of the build algorithm.

A leaf is created when (1) the number of triangles in a node is
smaller than or equal to a given threshold (7uqx = 4, triangle
count criterion) or (2) when the SAH cost of not subdividing
a node is less than the cost of subdividing it (cost criterion).
The value nmax = 4 was chosen from values 2, 4, 8, and 16
as it gives the fastest traversal times for shooting incoherent
rays over our test scenes (see Table 1). The depth of the hi-
erarchy is not limited since the build is always terminated by
the two criteria.

Memory layout. Figure 1 shows the memory layout of our
BVHs, as proposed by Aila and Laine [AL09]. The size of
each node in the node array is 64 bytes with children of each
node stored in a consecutive chunk of memory. The most sig-
nificant bit of the child offset determines whether the offset
points to an inner node or the first triangle in a leaf. Triangles
falling to the same leaf are stored sequentially in memory
and followed by a stop mark (0x80000000) that specifies the
end of the leaf. Triangle’s vertex data in Woop’s representa-
tion [Woo004] are stored in the triangle data array and take up
3 x 16 = 48 bytes. Triangle references are stored in a sepa-
rate triangle reference array with each reference occupying
3 x4 =12 bytes. Even if only 4 bytes are sufficient for the
reference index, the data are padded to 12 bytes so that the
same offset can be used to access both the triangle data and
the triangle reference arrays. The triangle reference array is
used to identify the hit triangles indices which are used later,
e.g., for shading computation. The triangle array layout sup-
ports a single triangle to be stored in multiple leaves through
duplication of the triangle’s data but this is not used in our
BVHs.

Traversal algorithm. For tracing the rays we use the
speculative while-while traversal algorithm of Aila and
Laine [AL09] which proved to be the fastest one for the
BVHs. This traversal algorithm is stack-based and stores the
traversal stack in local memory, which is part of the GPU
DRAM. The algorithm traces the rays separately of each
other (not using packet traversal algorithm) leading to high
performance on incoherent rays. The speculative traversal
allows for higher utilization of the parallel cores and in turn
higher performance.

3.2. Kd-trees

Build algorithm. Similarly to BVHs we build SAH kd-trees
using 32 splitting plane candidates in each node evenly dis-
tributed along the x, y, z extents of its axis-aligned bound-
ing box. Given the axis-aligned bounding box of an interior
node, the splitting plane candidates are distributed the same
way as for the BVH. Unlike for the BVHs, when all triangles
fall into one child of a node for the candidate split with the
minimal cost, an empty leaf is created for the other child.

The kd-trees are built with split clipping [HB02] to get high

(© 2015 The Author(s)

Computer Graphics Forum (©) 2015 The Eurographics Association and John Wiley & Sons Ltd.

kd-tree
Position Flag Left offset | Right offset
(4B) 4B) 4B) (4B)

node left left
array :

triangle
reference array B
(4B)

triangle
data array g
(48B)

Figure 2: Memory and node layout of kd-trees used in our
measurements. For kd-trees the triangle data array is ac-
cessed with a dependent memory access through the trian-
gle reference array because the triangle references may be
duplicated. The leaf is terminated with a stop mark (black
rectangle in the figure). The kd-tree node takes 16 bytes: the
position of the splitting plane stored in 4 byte floating point
value, a 4 byte information for the type of the node and two
4 byte offsets to the child nodes.

quality trees. With split clipping enabled a triangle is only
considered to fall into a child if it intersects its bounding box.
In the original sequential algorithm the bounding boxes of
all triangles and their fragments are maintained, and shrunk
upon intersections by the splitting planes. These auxiliary
bounding boxes are then used for more precise triangle-child
intersection tests. This technique is difficult to implement
on GPUs as it requires frequent dynamic memory allocation
for the newly created auxiliary bounding boxes. We imple-
ment split clipping by directly computing the intersection
of each triangle with the bounding boxes of the children of
the currently subdivided node. The new formulation that re-
peatedly computes the intersections between triangles and
bounding boxes does not require to keep the auxiliary boxes,
but is more computationally demanding. The proposed solu-
tion fits the GPU architecture well. We use the algorithm
of Akenine-Moller [AMOS5] for the intersection of an axis-
aligned box and a triangle.

We use the termination criteria of Havran and Bit-
tner [HB02] with modified constants to achieve fast ray trac-
ing. On GPUs the termination criteria also influence the di-
vergence of the ray-primitive intersection tests, making se-
lection of the constants more complex. A kd-tree leaf is cre-
ated when (1) the number of triangles in a node is smaller
than or equal to nqx = 2 (triangle count criterion) or (2) the
depth of the node is higher than the maximum allowed depth,
dmax = ki -logy N +kp with kj = 1.2 and k = 2.0 (node
depth criterion), or (3) the node has failed to pass the cost
criterion several times. The cost criterion specifies failure in
terms of the cost of a subdivided node and an unsubdivided

one: Cnew/C > rg"" with rg" = 0.9. The maximum number

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

BVH Kd-tree

Scene Pprimary [Mrays/s] Puiffuse [Mrays/s] Pprimary [Mrays/s] Puiffuse [Mrays/s]

Minax 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16
Sibenik 263 263 256 217 71 69 61 46 222 222 217 182 40 40 37 30
Fairy Forest 170 170 170 156 69 69 66 54 119 121 114 101 40 39 36 29
Crytek Sponza 164 164 156 141 47 46 41 33 154 152 145 127 38 38 34 26
Conference 255 255 251 232 73 72 71 62 197 198 195 174 50 49 45 36
Powerplant16 147 148 147 142 73 73 73 68 113 112 109 92 57 56 52 40
Dragon 278 282 264 223 183 182 167 135 127 128 129 113 86 84 79 61
Happy Buddha 238 244 233 200 175 177 161 129 122 124 125 111 87 86 79 64
Office House 66 66 66 63 19 19 19 18 135 133 128 114 42 41 39 34
Sodahall 313 313 294 263 117 115 107 89 278 263 233 196 87 84 75 59
Hairball 57 58 61 61 34 34 35 34 34 34 33 29 23 23 22 18
Houses 3x3 182 182 170 147 96 95 86 69 152 154 145 116 82 80 72 55
Asian Dragon 105 107 104 91 136 138 130 109 76 75 73 61 84 82 75 60
San Miguel 62 63 63 58 22 22 21 18 60 59 55 46 20 19 17 14
MPII subset 141 139 137 130 57 57 55 50 192 189 175 145 83 80 73 55
Houses 6 x5 127 130 127 111 64 65 61 51 135 137 125 105 71 69 61 48
Powerplant 62 62 63 63 19 19 20 19 103 101 94 75 37 36 33 26

Four SPD [Hai87] scenes with triangles used in [Hav00]

mount8 526 526 476 400 396 381 332 268 154 156 159 141 104 104 99 79
sombrero4 417 385 345 286 328 320 286 233 213 217 233 204 163 162 156 131
teapot40 455 455 435 370 286 280 248 202 164 164 161 143 104 103 93 76
tetra8 667 667 556 500 606 606 479 417 130 132 124 108 160 159 141 113
Average 142 143 141 130 59 59 57 50 115 115 110 95 53 52 48 38

Table 1: The dependence of the ray tracing performance of the BVH and the kd-tree on the maximum number of triangles in a
leaf (nmax is 2, 4, 8, and 16). Ppyipnqry is the ray tracing performance for primary rays in Mrays/s, and Py;ffyqe is the ray tracing
performance in Mrays/s for shooting 8 diffuse sample rays per primary ray. The average performance is computed from the

average traversal time in milliseconds.

of failures of the cost criterion along the path from the root
to the current node is set to Fiuqx = K }aﬂ + K%ail - dimax With

K}y =1.0and K7, = 0.26.

The value of nuqax was chosen from values 2, 4, 8, 16 as
it gives the fastest ray traversal times over our test scenes
(see Table 1). The value of k; was selected from three values
{1.0,1.1,1.2} and k; was selected from the range (2.0, 8.0)
with step 1.0. The value of rg"i" was selected from the range
(0.7,1.2) with step 0.1 to get the highest performance as
shown in Figure 3. Similarly, K%ail was selected from the
range (0.15,0.35) with step 0.01 to provide overall the high-
est performance for the ray traversal algorithm. For suffi-
ciently high r{"™ the values of constants K }m-l and K]%m-l do
not matter since the subdivision of the node is always con-
sidered as successful. The constants &, k, K}m»l and Kj%m»l
are used for tuning the build process based on the scene com-

plexity.

Memory layout. Figure 2 shows the memory layout of our
kd-tree, which is inspired by the BVH layout, but it is more
memory efficient when triangles are split into multiple ref-
erences. The children of an inner node are again stored

in a consecutive chunk of memory with each node taking
16 bytes. Similar to the BVH, the most significant bit of the
child offset differentiates between an inner node offset and
a triangle offset. A triangle offset with the largest negative
value is reserved for empty leaves so that no extra memory
is required for them. The flag in the node layout holds infor-
mation about the axis of the split plane. The triangle offset
points to the triangle reference array instead of the triangle
data array to prevent duplication of triangle data. Only tri-
angle references are duplicated and each reference occupies
just 4 bytes to save space. The triangle references falling into
a leaf are again stored in consecutive memory and the leaf is
terminated with a stop mark as in the BVH layout.

Traversal algorithm. The ray traversal algorithm is similar
to the one for the BVH, but its speculative variant is not used.
We have experimented with this optimization and found out
it slows down the traversal algorithm when used for kd-trees.
We suspect this is caused by the more scattered memory
access of kd-tree representation leading to increased mem-
ory bandwidth and latency. Moreover, this optimization mit-
igates the benefit of the early termination and increases code

(© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

25

20f T 1
v
@ 151 j
@
o
=3
]
2 10+ 4
o
5L 1
0 L L L L L L L L L L
014 016 018 02 022 024 026 028 03 032 034 036
2
Kai
PR 07— 0.8 —— 09 —s— 1.0 —e— 1.1 12 ——

Figure 3: Dependence of the ray tracing performance for

kd-trees on the rZ'i” and Kj%aﬂ constants, averaged over all
scenes.

complexity. According to the classification used in [HH11]
we are using a recursive stack-based traversal algorithm with
the near/far sorting of child nodes based on ray direction (see
Algorithm 1). The traversal stack keeps just two values per
entry (node address and exit distance) instead of the three
(node address, entry distance, and exit distance).

3.3. Hybrid data structures

Build algorithm. For building the SBVH [SFD09] we are
using the CPU based implementation provided in the frame-
work of Aila and Laine [AL09]. This is a high quality SAH
builder that chooses the best splitting plane using both the
object partitioning and space partitioning strategies. For ob-
ject partitioning the sweep based evaluation is used (exact
SAH evaluation), while for space partitioning 32 bins are
used in each axis. The best object partitioning splitting plane
is then compared to the best space partitioning splitting plane
to decide which to use to subdivide the node. The termi-
nation criteria are set the same as for the BVH build, i.e.,
Nmax = 4 and SAH cost termination.

Memory layout. The same memory layout as for the BVH is
used since it already allows for triangle duplication in multi-
ple leaves. The lengths of the triangle reference array and tri-
angle data array, however, no longer correspond to the num-
ber of input triangles.

Traversal algorithm. Since SBVH shares the same memory
layout with BVH, it can also use the same traversal algo-
rithm. Thus, we are again using the speculative while-while
traversal algorithm.

(© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and John Wiley & Sons Ltd.

Algorithm 1: Traversal code for the kd-tree, tmin is the
entry distance of a ray in the current node and fmax is
the exit distance in the current node.

1 Traverse () begin

2 Intersect ray with scene AABB, compute tmin and
tmax;
3 while (not hit and tmax > tmin) do
4 while (node is inner node and tmax > tmin) do
5 Fetch Kdtree node;
6 t < (split — orig) / dir;
7 Choose near/far based on ray direction;
8 if (1 > tmax) then
9 L node <— near;
10 else if (1 < rmin) then
1 L node < far;
12 else
13 node <+ near;
14 push(far, tmax);
15 tmax < t;
16 while (node is leaf) do
17 for (each triangle in leaf) do
18 intersect triangle, store distance in t;
19 tmax < t;
20 if (not hit) then
21 tmin <— tmax;
22 pop(node, tmax);
23 else
24 L break;
4. Results

We evaluated the algorithms on a PC with Intel Core i7-
2600, 16 GB of RAM and NVIDIA GeForce GTX 680 run-
ning 64-bit Windows 7.

4.1. BVHs vs Kd-trees

Both data structures were tested on twenty scenes with
a varying number of primitives and depth complexity.
Four of the scenes were taken from the Standard Pro-
cedural Database (SPD) [Hai87] to allow comparison on
the triangular scenes with the older performance study of
Havran [Hav00]. The measured data were averaged over
four viewpoints for the non-SPD scenes, while for the SPD
scenes a single viewpoint given by the SPD proposal was
used. The images of rendered scenes are shown in Figure 4.
The ray tracing performance was measured five times for
each viewpoint and the maximum performance is reported.

The summary results from measurements with BVHs and
kd-trees on our test scenes are shown in Table 2. Since the

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

80K 174K 262K 283K 366K 871K 1,087K 1,819K
Sibenik Fairy Forest Crytek Conference Powerplantl6 ~ Dragon Happy Office House
Sponza Buddha

2,169K 2,880K 3,275K 7,219K 7,881K 10,762K 10,918K 12,749K
Sodahall Hairball Houses 3x3 Asian Dragon San Miguel MPII subset Houses 6x5 Powerplant

kJ!kVA

132K 130K 105K 65K
mount8 sombrero4 teapot40 tetra8

Figure 4: Rendered images of our twenty test scenes in resolution 1024 x 1024 pixels. Eight diffuse samples per primary ray
were used for rendering. For the scenes from the Standard Procedural Database (SPD) [Hai87] only the viewpoints defined by
this database were used. For the other scenes four representative viewpoints were chosen. The MPII subset consists of layers
#1,4,7,8,9,10,12,13 of the whole model [HZDS09].

(© 2015 The Author(s)
Computer Graphics Forum (© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

Scene Niris NG/Nm's Nref/Nrris Memory Nir(Prima”Y) Nt:(Primar.") Pprimary Pdiffuse
(-] (-] (-] (MB] (-] (-] [Mrays/s] [Mrays/s]

BVH KDT ratio BVH KDT BVH KDT BVH KDT ratio BVH KDT ratio BVH KDT ratio BVH KDT ratio
Sibenik 80K 0.32 0.87 2.73 1.0 34 1.87 211 8.6 8.1 094 644 36.8 0.57 263 222 0.84 70 40 0.58
Fairy Forest 174K 0.31 091 291 1.0 3.5 3.99 475 124 11.2 090 642 51.0 0.79 169 120 0.71 69 40 0.57
Crytek Sponza 262K 0.30 1.36 449 1.0 42 584 9.72 124 7.6 0.61 957 49.0 0.51 164 154 094 46 38 0.83
Conference 283K 0.32 0.71 220 1.0 34 6.66 6.75 9.6 99 1.04 51.3 28.6 0.56 254 197 0.78 72 50 0.70
Powerplant16 366K 0.29 1.17 4.04 1.0 56 7.87 144 128 6.8 0.53 60.8 37.8 0.62 147 113 0.77 73 57 0.78
Dragon 871K 0.33 192 581 1.0 4.6 209 409 3.2 39 121 31.0 29.5 095 282 127 045 182 85 047
Happy Buddha 1,087K 0.33 232 7.02 1.0 5.0 26.1 594 39 40 1.03 35.0 29.6 0.85 244 122 050 177 86 0.49
Office House 1,819K 0.27 0.65 238 1.0 3.3 36.0 39.7 58.8 9.8 0.17 142.7 42.6 030 66 132 200 19 42 2.17
Sodahall 2,169K 0.30 1.03 343 1.0 3.8 481 66.1 56 4.5 080 64.1 41.3 0.64 313 278 0.89 115 87 0.75
Hairball 2,880K 0.30 4.42 14.63 1.0 11.8 64.1 325 24.8 16.7 0.67 101.3 77.3 0.76 57 34 0.60 34 23 0.68
Houses 3x3 3,275K 033 1.84 566 1.0 46 775 151 59 44 0.75 451 31.6 0.70 182 154 035 94 82 0.87
Asian Dragon 7,219K 0.32 1.77 556 1.0 43 168 315 4.8 3.6 0.74 352 373 1.06 107 76 0.71 138 84 0.61
San Miguel 7,881K 0.31 1.19 3.82 1.0 3.8 181 259 165 6.6 0.401359 77.5 0.57 63 60 0.94 22 20 0.89
MPII subset 10,762K 0.28 1.28 4.56 1.0 45 226 397 9.3 34 037 833 34.8 042 139 213 1.53 57 91 1.61
Houses 6x5 10,918K 0.32 2.60 8.00 1.0 54 258 661 8.2 4.5 0.55 553 353 0.64 128 147 1.15 65 175 1.16
Powerplant 12,749K 0.26 0.95 3.70 1.0 39 248 378 463 8.5 0.18 1149 49.7 043 62 112 1.81 19 40 2.08

Four SPD [Hai87] scenes with triangles used in [Hav00]

mount8 132K 0.28 1.75 633 1.0 44 272 572 52 59 1.13 30.8 339 1.10 385 156 0.41 248 106 0.43
sombrero4 130K 0.29 1.78 6.24 1.0 4.5 2.76 581 2.6 35 1.35 18.3 16.5 090 526 213 0.40 386 164 0.42
teapot40 105K 0.30 2.12 7.03 1.0 52 234 552 33 34 1.03 26.6 26.7 1.00 370 167 0.45 225 106 0.47
tetra8 65K 0.25 234 936 1.0 55 125 3.73 1.7 35 2.06 16.7 23.1 1.38 588 137 0.23 541 163 0.30
Average - 030 1.65 549 1.0 4.7 6941375 128 6.5 0.82 63.6 39.5 0.74 142 117 085 59 54 0.34

Table 2: Comparison of various statistics of BVHs and kd-trees (KDT) on twenty scenes including ratios of some characteristics.
Niris is the number of scene triangles, NG /Niris is the number of built nodes divided by the number of scene triangles, N, 5 /Ntris
is the number of references to triangles divided by the number of scene triangles (1.0 for BVHs because there is no triangle
splitting), Memory is the summed memory consumed by the nodes and triangle references of the data structure in Mbytes (MB),
Nj; is the number of ray-triangle intersection tests per ray, Nis is the number of traversal steps per ray, Pprimary 18 the ray tracing
performance for primary rays in Mrays/s, and Py;rf,s is the ray tracing performance for 8 diffuse samples in Mrays/s. The
average performance is computed from the average traversal time in milliseconds. The columns denoted as ‘ratio’ give the ratio
from numbers of the two previous columns on the left. In particular, the value of the performance ratio column indicates the
speedup of the kd-tree over the BVH (value greater than one corresponds to the kd-tree being faster than the BVH).

kd-tree is a space subdivision data structure, it contains more
nodes and triangle references (pointers to the same triangle
data) than the BVH for the same input scene. The number
of triangle references cannot be estimated in advance. In our
measurements up to 14.6x more nodes and 11.8x more tri-
angle references were created for kd-trees than for BVHs
for the Hairball scene. This increases both the build times
and the memory footprint of kd-trees.

Multiple reference to triangles due to splitting in kd-trees
can both increase or decrease the ray tracing performance.
The decrease of the ray tracing performance happens be-
cause more memory accesses are required, and those are
more scattered in the address space. On the other hand, the
capability to decrease the triangle bounds and the early ter-
mination of the ray traversal algorithm upon the first hit al-
lows the kd-tree to achieve lower numbers of ray-triangle
intersection tests (V) and traversal steps (NVis). The reduc-

(© 2015 The Author(s)

Computer Graphics Forum (©) 2015 The Eurographics Association and John Wiley & Sons Ltd.

tion in the number of algorithmic steps can become signifi-
cant for complex scenes with high depth complexity. For ex-
ample in the Office House scene the kd-tree performs only
17% ray-triangle intersection tests (N;;) and 30% traversal
steps (NVzs) compared to the BVH and this reduction leads to
a twofold ray tracing speedup. For some other scenes even
significant reduction in the number of operations need not
translate to faster ray tracing, such as for the San Miguel
scene. When the number of algorithmic steps (both traver-
sal steps and intersection tests) is roughly similar (Happy
Buddha and teapot40) for both BVHs and kd-trees, then the
ray tracing with kd-trees is about twice slower than for the
BVHs.

Differentiating performance by the scene complexities, the
BVH is usually more efficient on small to medium sized
scenes and less efficient on large scenes as shown in the
graph in Figure 5. The Office House scene is an exception to

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

350
primary rays, BVH [
primary rays, kd-tree [
diffuse rays, BVH ERemd
300 + diffuse rays, kd-tree EEEEE
250 -
)
@
g
S 200 -
=
]
o o
c k
< <
E 150 F I
o %]
£ =
o) =
o =
100 | b i
F i
A 3 E i 24 i
S0 MK i WA id . i o
80K 262K 283K 366K 871K 1,087K 1,819K 2,169K 2,880K 3,275K 7,219K 10,918K 12,749K
Sibenik Fairy Crytek Conference Power- Dragon Happy Office Sodahall Hairball Houses Asian Houses Powerplant
Forest Sponza plant16 Buddha House 3x3 Dragon Miguel subset 6x5

Figure 5: Performance of BVHs and kd-trees on our non-SPD test scenes for both primary (solid color) and diffuse rays (color
pattern). The scenes are sorted in ascending order with the number of triangles increasing to the right. For very large scenes the

kd-tree performs faster than the BVH.

this rule (small to medium sized scenes) because it is formed
by many large triangles causing significant overlaps of BVH
nodes, so the ray tracing with kd-tree is about twice faster
than with BVH.

Even if the build times for the data structures on the GPU
are not the subject of our study, we mention them briefly.
We have found out that for top-down build algorithms the
times are by factor of 10 to 20 times higher for kd-trees
than for BVHs. This is due to the need for the dynamic
memory allocation required for kd-trees that is rather slow
on a GPU, even if we use an optimized memory alloca-
tor for GPUs [VH14]. Moreover, the triangle splitting also
increases the number of triangles that must be repeatedly
sorted in the lower levels of the tree, thus, increasing the
memory traffic. The use of split clipping in kd-tree build al-
gorithm decreases the rendering times, but usually at the cost
of increasing the build times. When not using the split clip-
ping, the build times for kd-trees are decreased by approxi-
mately 20%.

In our measurements, we have tested four SPD
scenes [Hai87] consisting purely of triangles (as our
software framework supports only such scenes) that were
also used in Havran’s Ph.D. thesis [Hav00]. Comparing the
results from our kd-tree implementation to those in Havran’s
work, measured for the same geometry data and the same
viewpoints, we can see that similar trees are built (number
of nodes, triangle references, and traversal characteristics).

The main difference in the build algorithm is that we use
only 32 uniformly distributed candidate splitting planes
instead of all the reasonable planes. Using only a few planes
was reported by several authors to only slightly decrease the
quality of the data structure [HKRS02, HMSO06].

Given the built kd-trees are only slightly lower quality than
the ones of Havran [Hav00] we can compare the ray traver-
sal performances. The measurements for primary rays show
that only the development of the hardware accounts for an
average performance speedup of 1070 for tracing rays in a
span of 15 years. Interestingly, this practically matches the
progress predicted by Moore’s law (doubling of computation
performance every 18 months): speedup of 210 = 1024 x for
15 years (single core Pentium II in 1997 to massively paral-
lel GPU architecture Kepler GK104 in 2012). This is most
likely thanks to ray tracing being efficiently parallelizable.
This conclusion cannot be generalized to other algorithms
or the CPU to GPU comparison [Leel0].

Our setup for testing the data structures for ray trac-
ing significantly differs from the one of Zlatuska and
Havran [ZH10] in several aspects. We measure our results
on the NVIDIA Kepler architecture introduced in 2012, that
is two generations newer than the NVIDIA Tesla archi-
tecture used in the paper by Zlatuska and Havran [ZH10]
(year 2007/8, GeForce 6 Series and GeForce 200 Se-
ries). In particular, hardware caches were introduced in the
newer hardware, making stack-based ray traversal meth-

(© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

ods more efficient. We use the single ray traversal algo-
rithm [ALO9] for BVHs, while their study used a packet
traversal one [GPSSO07]. The kd-tree ray traversal algorithms
differ as well: we used a modified algorithm of Aila and
Laine [ALO9], while Zlatu§ka and Havran used the algo-
rithm of Horn et al. [HSHHO7] based on short stack with
infrequent restarts of the ray traversal from the root node.
In particular, the packet ray traversal algorithm used in the
the older study caused the BVHs to be faster only on co-
herent rays, while they were significantly slower for the in-
coherent ones. The traversal algorithms for BVHs and kd-
trees compared in our study are much more similar, show-
ing the fundamental differences between the two accelera-
tion data structures. Moreover, only scenes up to 1 million
primitives (Happy Buddha) were used in the original paper,
while we compare scenes up to 12 million primitives (Pow-
erplant) where the kd-trees provide better performance than
the BVHs as shown in Table 2. Last but not least, the older
study used data structures built up on a CPU and then ray
tracing of these data structures on a GPU. However, we are
able to build up both data structures on a GPU directly, using
relatively similar algorithms for BVHs and kd-trees.

4.2. Hybrid data structures

We have also tested a variant of BVH called SBVH [SFD09]
that allows to reduce the size of the primitive bounding boxes
by spatial splitting them into two references by the means of
the splitting plane. This method represents a hybrid concept
between the BVH and the kd-tree.

A parallel build algorithm of SBVHs for GPUs has not been
proposed yet as it likely faces more challenges than the con-
struction of kd-trees, especially with increased size of the
data structure and temporary storage which would likely not
fit into the main memory on current GPUs for large scenes.
Thus, for our comparison we are using the highest quality
CPU builder. Note that the parallel build algorithm of Kar-
ras and Aila [KA13] implements an algorithm in the spirit of
Ernst and Greiner [EG07] and not of the SBVH as described
by Stich et al. [SFD09] and Popov et al. [PGDS09].

The performance of SBVH is compared to the one of BVH
and kd-tree in Table 3. The hybrid algorithm is always faster
than the other two because it combines the lower numbers of
ray-triangle intersection tests (N;) and traversal steps (Nis)
of the kd-tree with the benefit of better mapping to the GPU
hardware of the BVH.

We have not implemented and measured BIH [WKO06] since
it was shown to have lower ray tracing performance than
BVH [Wal07].

5. Limitations

First, our study is limited to scenes composed of triangles
only. For primitives with a higher intersection cost the ben-

(© 2015 The Author(s)

Computer Graphics Forum (©) 2015 The Eurographics Association and John Wiley & Sons Ltd.

Scene Niris Pprimary Pdiffuse
-] [Mrays/s [Mrays/s)]

SBVH BVH KDT SBVH BVH KDT
Sibenik 80K 327 0.81 0.68 97 0.72 042
Fairy Forest 174K 240 0.71 0.50 98 0.71 0.40
Crytek Sponza 262K 206 0.80 0.75 72 0.63 0.53
Conference 283K 308 0.83 0.64 106 0.67 0.47
Powerplant16 366K 301 049 038 162 045 0.35
Dragon 871K 337 0.84 038 215 0.85 0.40

Happy Buddha 1,087K 293 0.83 042 209 0.84 041
Office House 1,819K 226 0.29 0.58 71 0.27 0.59

Sodahall 2,169K 368 0.85 0.76 159 0.73 0.55
Hairball 2,880K 61 094 0.56 41 0.83 0.57
Houses 3x3 3275K 258 0.70 0.60 146 0.65 0.56
Asian Dragon 7,219K 183 0.59 041 213 0.65 0.39
San Miguel 7,881K 123 0.52 048 45 0.49 043
MPII subset 10,762K 304 0.46 0.70 156 0.37 0.59
Houses 6x5 10,918K 246 0.52 0.60 138 0.47 0.55
Powerplant 12,749K 197 0.31 0.57 79 025 0.51
Average - 204 0.60 0.54 97 0.50 0.48

Table 3: Comparison of the performance of SBVHs, BVHs
and kd-trees (KDT) on sixteen scenes. Ppripqry is the
ray tracing performance for primary rays in Mrays/s, and
Pyif fuse 18 the ray tracing performance for 8 diffuse samples
in Mrays/s. The average performance is computed from the
average traversal time in milliseconds. For SBVH the mea-
sured performance is given, while for BVH and kd-tree, the
values indicate the speedup over the SBVH (values lower
than one correspond to the SBVH being faster).

efit of the kd-tree doing less intersection tests than the BVH
may be more profound. Second, we have used and studied
stack-based algorithms that are reported to be faster on the
GPU than the stackless ones [ASK14].

Third, in our comparison we apply binning with 32 uni-
formly distributed candidate splitting planes for the selection
of the best splitting plane for both BVHs and kd-trees. This
choice may lead to data structures with slightly lower qual-
ity than testing all the planes coinciding with the bounding
boxes of triangles (maximum 6N candidate splitting planes
for N triangles for all three axes). Binning has been ex-
tensively studied for data structure build and using only a
few planes was reported to decrease the quality of the data
structure just slightly. For kd-trees, Hurley et al. [HKRS02]
showed that there is little benefit for having more than 32
split plane candidates per axis and using just 8 split planes
per axis results in a slowdown of less than 10%. Hunt et
al. [HMSO06] used 8 uniform and 8 adaptive planes per axis
and concluded that the increase in rendering time was less
than 4%. For BVHs Wald [Wal07] used 7 candidate planes
per axis with testing just the longest axis. The rendering per-
formance was kept within 9% of the exact sweep build algo-

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

rithm. Giinther et al. demonstrated that the BVHs build al-
gorithm with binning can sometimes outperform the sweep
build one even when using a few splitting planes [GPSS07].

We have also evaluated our own builder when using 64 split-
ting plane candidates on our test scenes. According to expec-
tations this leads to a maximum speedup of 10% compared
to using 32 planes and using more planes actually decreased
performance on two of the scenes. The choice of the number
of the splitting planes thus does not influence the conclusions
drawn from our comparison of BVHs and kd-trees since the
measured differences are higher than the differences made
by using more planes.

6. Discussion

We have implemented and optimized the data structures and
the corresponding ray traversal algorithms to utilize the fea-
tures of the GPU architecture, which has a different data pro-
cessing workflow compared to the CPU (cache-based versus
stream-based model). We will discuss these issues below and
document them by the numbers from measurements.

6.1. BVHs vs Kd-trees

We have analyzed our ray traversal kernels on primary rays
using the NVIDIA Nsight version 2.2 [NVI12]. The detailed
profiling characteristics measured on all our test scenes are
shown in Table 4.

Below we use for the discussion the Happy Buddha scene,
for which the number of intersection tests and traversal steps
is similar for both the BVH and the kd-tree, so that the
other measured characteristics can be meaningfully com-
pared. The number of executed floating point operations, is
clearly in favor of the kd-tree (179 million operations for
kd-tree versus 564 million operations for BVH). This is ex-
pected since the cost of a single traversal step is higher for
the BVH and the ray traversal algorithm is carried out spec-
ulatively. However, GPUs have high performance in floating
point operations and the difference in executed operations
does not significantly influence the comparison.

Further, the percentage of divergent branching (percentage
of branches where different threads of a warp took different
paths and the warp’s execution must be serialized, to the to-
tal number of branches) is worse for the kd-tree which does
not use the speculative traversal (13.3% for BVH with spec-
ulative ray traversal algorithm versus 23.9% for kd-tree). We
have also profiled a modified BVH traversal kernel without
speculative traversal and verified that it is slower than the
speculative version and its percentage of divergent branch-
ing is 18.3%.

While Aila and Laine [AL09] report that the traversal ker-
nel is compute limited for the BVH, no such study has been
conducted for the kd-trees. Our analysis below shows that

the kd-tree ray traversal algorithm is memory limited (band-
width and latency), explaining the results of Table 2.

There are significant differences between the memory ac-
cess patterns of both data structures. For the BVH the two
children’s bounding boxes are fetched with coherent mem-
ory access, while for the kd-tree several accesses are needed
to fetch a similar amount of geometrical information. Read-
ing several nodes for a kd-tree instead of just one for the
BVH, that represent roughly the same geometric informa-
tion, increases the amount of transferred data from memory
(512 MB for BVH versus 1414 MB for kd-tree) because of
the unused data in each memory fetch. Although this can be
mitigated by an improved memory layout of the kd-tree, the
two children 64 byte node of the BVH proposed in [AL09]
would be likely difficult to conquer. Further, the latency for
accessing the same amount of triangle geometry is higher
for kd-trees as well due to the dependent memory fetches to
GPU DRAM. The memory latency has been recently identi-
fied as a bottleneck of the ray traversal performance for the
BVHs as well [Gut14], but in our opinion it has even higher
impact on the results for the kd-tree.

The traversal kernel for kd-trees requires to save two items
on the traversal stack (node address and traversed distance
along a ray, in total 8 bytes), while the BVH ray traversal
algorithm saves only the node address (4 bytes). When dif-
ferent threads in a warp write into different stack indices the
memory writes are not coalesced and the data transfer further
increases. For the Happy Buddha scene this accounts for an
increased size of the data stored to local memory (73 MB for
BVH versus 334 MB for kd-tree). Given the traversal stack
is located in slow local memory (physically in GPU DRAM)
this increases the memory traffic of the already memory lim-
ited code and hence it is not suited for the limited size of lo-
cal cache of contemporary GPU architectures. The amount
of data read from local memory is similar for both data struc-
tures (132 MB for BVH versus 171 MB for kd-tree) but the
L1 cache hit ratio of the read accesses is very different (90%
for BVH versus 55% for kd-tree). The amount of utilized
read data is probably similar because early ray termination of
the kd-tree traversal algorithm may leave some stack items
unread. The different cache hit ratio is possibly caused by
different threads in the same warp reading different stack
indices from global memory, which causes incoherent ac-
cesses to GPU DRAM. We can only speculate that faster
and larger local memory and/or cache needed by stack-based
traversal algorithms could be beneficial for performance in
upcoming GPU architectures for both BVHs and kd-trees.

We also performed profiling on the Powerplant scene where
the kd-tree performs significantly less intersection tests and
traversal steps than the BVH. The profiled statistics re-
veal one notable difference to the Happy Buddha scene (for
which the number of traversal steps and intersections tests
is very similar for both data structures). The amount of data
transferred from the GPU memory to the on-chip memory

(© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

Scene Fops [—] DBranch (%) LoadG [MB] StoreL [MB| LoadL [MB| L1y (%]
BVH KDT ratio BVH KDT ratio BVH KDT ratio BVH KDT ratio BVH KDT ratio BVH KDT ratio
Sibenik 1067 310 029 3.7 68 185 335 750 224 48 131 273 69 77 1.11 94 78 0.83
Fairy Forest 1171 391 033 84 13.7 1.63 722 1446 2.00 99 266 270 145 179 1.24 91 69 0.76
Crytek Sponza 1557 303 0.19 52 100 193 516 1081 2.10 109 226 2.07 161 131 0.81 93 77 083
Conference 924 293 032 45 97 217 426 789 1.85 43 139 323 62 91 146 9% 81 0.85
Powerplantl6 1154 268 0.23 82 140 1.71 721 1315 1.82 92 138 150 139 178 1.28 91 71 0.78
Dragon 495 178 036 122 21.8 1.78 441 1370 3.10 60 245 412 109 155 1.41 92 58 0.64
Happy Buddha 564 179 032 133 239 180 512 1414 2.76 73 334 459 132 171 1.30 90 55 0.61
Office House 2348 342 0.15 4.5 12.1 2.69 1779 1240 0.70 155 234 1.51 190 145 0.76 89 73 0383
Sodahall 974 219 022 23 57 252 226 608 2.69 43 134 3.08 57 74 131 8 75 0.87
Hairball 2044 550 0.27 11.1 20.8 1.87 2038 4529 222 311 1088 3.50 423 737 1.74 88 66 0.75
Houses 3x3 746 198 026 104 18.6 1.79 591 1117 1.89 95 239 251 149 163 1.09 85 64 0.75
Asian Dragon 587 183 0.31 149 251 1.68 1209 2148 178 131 481 3.67 217 241 1.11 77 47 0.61
San Miguel 2196 356 0.16 9.5 19.5 2.04 1585 2849 1.80 303 744 246 432 438 1.01 84 65 0.76
MPII subset 1321 193 0.15 6.3 125 198 597 794 1.33 93 216 232 143 108 0.76 89 66 074
Houses 6 x5 937 199 021 108 185 1.72 874 1130 129 128 247 192 190 166 0.87 81 64 0.78
Powerplant 1643 315 0.19 9.2 155 1.68 2250 1416 0.63 231 345 149 301 219 0.73 84 68 0.81
Four SPD [Hai87] scenes with triangles used in [Hav00]
mount8 550 239 043 79 19.0 241 348 1208 3.47 41 278 6.85 68 157 232 94 64 0.68
sombrero4 318 146 046 8.1 229 283 303 946 3.12 21 190 9.04 37 79 212 96 57 0.59
teapot40 448 174 039 8.6 20.6 240 327 1096 3.35 36 240 6.68 65 135 2.06 92 67 0.73
tetra8 263 137 052 93 258 277 226 1362 6.03 24 344 1417 44 246 5.62 95 61 0.65
Average 1065 259 0.29 84 168 2.06 801 1430 231 107 313 4.01 157 195 1.51 89 66 074

Table 4: Selected profiling characteristics of BVHs and kd-trees (KDT) on 20 scenes including ratios of the characteristics. Fyps
is the number of performed floating point operations in millions, DBranch is the percentage of divergent branches, LoadG is
the amount of memory loaded from GPU DRAM in MB, StoreL is the amount of memory stored to local memory (part of GPU
DRAM) majority of which is consumed by traversal stack traffic, LoadL is the amount of memory loaded from local memory
(part of GPU DRAM) majority of which is consumed by traversal stack traffic, and L1, is the percentage of L1 hits for these
loads. The value of the ratio column indicates the ratio of the kd-tree over the BVH. The last row holds the average values over

the tabled data.

(cores) is much smaller for the kd-tree due to much fewer
nodes and triangles being accessed during the ray traversal
algorithm (2250 MB for BVH versus 1416 MB for kd-tree).
The other profiler statistics cannot outweigh the significant
difference in the amount of requested memory, explaining
the lower performance of the BVH.

6.2. Hybrid data structures

In Table 5 we present the profiling statistics for SBVHs as an
ratio of the BVH value. These statistics are somewhat harder
to construe since the ratio of the number of splits using spa-
tial subdivision to the number of splits using the object sub-
division and the impact of spatial splits on the ray tracing
performance are scene dependent for the SBVH.

SBVHs execute 8 to 64% less floating point operations than
BVHs because of the decreased number of performed inter-
section tests. Still, this is significantly more work than done
by the kd-tree. The percentage of divergent branching is usu-
ally also decreased since the spatial splits produce nodes

(© 2015 The Author(s)

Computer Graphics Forum (©) 2015 The Eurographics Association and John Wiley & Sons Ltd.

with smaller spatial extent that are less likely to be visited
by rays. On the other hand, for scenes with excessive overlap
of bounding boxes (Office House), where both child nodes
are usually visited for BVHs, the spatial splits increase the
branching divergence.

The memory related statistics (LoadG, StoreL and LoadL)
are almost exclusively decreased for the SBVH and usually
so by a similar percentage. This indicates that the decreased
number of intersection test causes less nodes to be loaded
from the global memory and also stored and loaded from the
traversal stack. Unlike for the kd-tree this does not come at
the cost of more incoherent memory accesses or larger size
of items stored to the stack. The L1 cache hit ratio was kept
almost the same for SBVHs as for BVHs because the same
traversal algorithm and memory layout is used for both.

7. Conclusion and Future Work

In this paper we have compared the performance of the kd-
trees and the BVHs on today’s GPUs by NVIDIA with Ke-

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

Scene Fops DBranch LoadG StoreL LoadL Lly;
(<] [%] [MB] [MB] [MB] [%]
ratio ratio ratio ratio ratio ratio

Sibenik 0.80 0.84 074 076 0.74 1.01

FairyForest 0.79 081 056 067 0.70 1.03
Crytek Sponza 0.82 079 066 0.69 0.68 1.02
Conference 0.89 092 0.84 088 0.88 0.92
Powerplantl6 0.52 082 040 027 054 1.02
Dragon 0.92 090 081 062 0.80 1.01
Happy Buddha 0.91 089 080 078 0.77 1.01
Office House 0.43 124 023 043 051 1.05
Sodahall 0.83 079 081 078 0.77 1.07
Hairball 0.84 1.01 077 116 1.12 1.01
Houses 3x3 0.89 0.82 059 067 0.69 1.05
Asian Dragon 0.83 0.89 059 065 0.68 1.09
San Miguel 0.72 073 041 051 051 1.12
MPII subset 0.59 071 046 047 047 1.04
Houses 6x5 0.74 077 040 050 0.56 1.09
Powerplant 0.61 080 020 034 0.38 1.08

Average 0.73 088 0.60 063 0.66 1.03

Table 5: Selected profiling characteristics of SBVHs, given
as an ratio of SBVH values to reference BVH values on 20
scenes. The legend is the same as in Table 4.

pler core (year 2012/13). The number of the traversal steps
and the intersection tests for ray tracing is lower for the kd-
trees than for the BVHs, while the ray tracing performance is
typically higher for the BVHs than for the kd-trees. In partic-
ular, the BVHs are faster on small to medium sized scenes.
This is highly important for rendering on devices with low
compute power, such as mobile devices, that are capable of
rendering only small scenes. On the other hand, for larger
scenes with high depth complexity the kd-trees outperform
the BVHs as the traversal overhead of the BVHs is signif-
icant for spatially overlapping regions. The hybrid SBVH
data structure presents the best of both worlds by keeping
the good hardware mapping of the BVH, while decreasing
the number of intersection tests as in the kd-tree. The per-
formance difference between the data structures can be best
explained by the varying amount of data transferred from the
relatively slow global memory due to the different node and
triangle layouts.

Our measurements and conclusions hold for a simple mem-
ory layout model of the trees representing the BVHs and
the kd-trees, i.e., each node is allocated in the memory ir-
respective of the memory addresses of the other nodes using
a simple memory allocator. The future work could address
the comparison of both data structures with memory lay-
out optimized for decreased memory traffic of contemporary
GPUs, where nodes with high spatial locality are organized
into memory chunks such as in [Sz¢é03].

Acknowledgements

We would like to thank Marko Dabrovic for the Sibenik
model, DAZ3D for the Fairy Forest model, Frank Meinl
at Crytek for the Crytek Sponza model, Greg Ward for
the Conference model, Carlo H. Séquin for the Sodahall
model, Samuli Laine and Tero Karras for the Hairball model,
Guillermo Llaguno for the San Miguel model, the UNC
for the Powerplant model, and Stanford repository for the
Dragon, Happy Buddha, and Asian Dragon models.

We would also like to thank Tero Karras, Timo Aila, and
Samuli Laine for releasing their GPU ray tracing framework.
This research was supported by the Czech Science Founda-
tion under research programs P202/12/2413 (Opalis) and the
Grant Agency of the Czech Technical University in Prague,
grant No. SGS13/214/OHK3/3T/13.

References

[AKL13] AILA T., KARRAS T., LAINE S.: On Quality Metrics
of Bounding Volume Hierarchies. In Proceedings of HPG 2013
(July 2013), ACM SIGGRAPH/Eurographics, pp. 101-107. 2

[AL09] AILA T., LAINE S.: Understanding the Efficiency of Ray
Traversal on GPUs. In Proceedings of HPG 2009 (2009), ACM
SIGGRAPH/Eurographics, pp. 145-149. 2, 3,5, 9, 10

[AMO5] AKENINE-MOLLER T.: Fast 3D Triangle-box Overlap
Testing. In ACM SIGGRAPH 2005 Courses (2005), ACM. 3

[ASK14] AFRA A. T., SZIRMAY-KALOS L.: Stackless Multi-
BVH Traversal for CPU, MIC and GPU Ray Tracing. Computer
Graphics Forum 33, 1 (2014), 129-140. 9

[BHH13] BITTNER J., HAPALA M., HAVRAN V.: Fast Insertion-
Based Optimization of Bounding Volume Hierarchies. Computer
Graphics Forum 32, 1 (2013), 85-100. 1

[CKL*10] CHoO! B., KOMURAVELLI R., LU V., SUNG H.,
BoccHINO R. L., ADVE S. V., HART J. C.: Parallel SAH k-D
Tree Construction. In Proceedings of HPG 2010 (2010), ACM
SIGGRAPH/Eurographics, pp. 77-86. 2

[DPS10] DANILEWSKI P., POPOV S., SLUSALLEK P.: Binned
SAH Kd-Tree Construction on a GPU. Tech. rep., Computer
Graphics Group, Saarland University, June 2010. 2

[EGO7] ERNST M., GREINER G.: Early Split Clipping
for Bounding Volume Hierarchies. In Proceedings of the
IEEE/Eurographics Symposium on Interactive Ray Tracing 2007
(2007), IEEE Computer Society, pp. 73-78. 9

[GHFB13] GuU Y., HE Y., FATAHALIAN K., BLELLOCH G.: Ef-
ficient BVH Construction via Approximate Agglomerative Clus-
tering. In Proceedings of HPG 2013 (July 2013), ACM SIG-
GRAPH/Eurographics, pp. 81-88. 2

[GPSS07] GUNTHER J., POPOV S., SEIDEL H.-P., SLUSALLEK
P.: Realtime Ray Tracing on GPU with BVH-based Packet
Traversal. In Proceedings of the IEEE/Eurographics Symposium
on Interactive Ray Tracing 2007 (Sept. 2007), IEEE Computer
Society, pp. 113-118. 9, 10

[GS87] GOLDSMITH J., SALMON J.: Automatic Creation of Ob-
ject Hierarchies for Ray Tracing. IEEE Computer Graphics and
Applications 7, 5 (May 1987), 14-20. 2

[Gutl4] GUTHE M.: Latency Considerations of Depth-first GPU
Ray Tracing. In Eurographics (Short Papers) (2014), Galin E.,
Wand M., (Eds.), Eurographics Association, pp. 53-56. 2, 10

(© 2015 The Author(s)

Computer Graphics Forum (© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Vinkler et al. / Performance Comparison of Bounding Volume Hierarchies and Kd-trees for GPU Ray Tracing

[Hai87] HAINES E. A.: A Proposal for Standard Graphics Envi-
ronments. IEEE Computer Graphics and Applications 7, 11 (Nov
1987),3-5. 4,5,6,7,8, 11

[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms. Ph.d.
thesis, Department of Computer Science and Engineering, Fac-
ulty of Electrical Engineering, Czech Technical University,
November 2000. 2,4,5,7,8, 11

[HB02] HAVRAN V., BITTNER J.: On Improving KD-Trees for
Ray Shooting. Journal of WSCG 10, 1 (Feb 2002), 209-216. 2,
3

[HH11] HAPALA M., HAVRAN V.: Review: Kd-tree Traversal
Algorithms for Ray Tracing. Computer Graphics Forum 30, 1
(2011), 199-213. 5

[HKRS02] HURLEY J., KAPUSTIN A., RESHETOV A.,
SOuPIKOV A.: Fast Ray Tracing for Modern General Purpose
CPU. In Proceedings of Graphicon (2002), p. 8. 8,9

[HMS06] HUNT W., MARK W., STOLL G.: Fast kd-tree Con-
struction with an Adaptive Error-Bounded Heuristic. In Proceed-
ings of the IEEE/Eurographics Symposium on Interactive Ray
Tracing 2006 (Sept 2006), IEEE Computer Society, pp. 81-88.
8,9

[HSHHO7] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive K-d Tree GPU Raytracing. In Proceedings
of the 2007 Symposium on Interactive 3D Graphics and Games
(2007), ACM, pp. 167-174. 9

[HZDS09] HAVRAN V., ZAJAC J., DRAHOKOUPIL J., SEIDEL
H.-P.: MPII Building Model as Data for Your Research. Res.rep.
MPI-I1-2009-4-004, MPI Informatik, Dec 2009. 6

[KA13] KARRAS T., AILA T.: Fast Parallel Construction of
High-Quality Bounding Volume Hierarchies. In Proceedings of
HPG 2013 (July 2013), ACM SIGGRAPH/Eurographics, pp. 89—
99. 1,9

[Kap85] KAPLAN M.: Space-Tracing: A Constant Time Ray-
Tracer. In SIGGRAPH 85 State of the Art in Image Synthesis
seminar notes (July 1985), Addison Wesley, pp. 149-158. 2

[KIS*12] KOPTA D., IZE T., SPJUT J., BRUNVAND E., DAVIS
A., KENSLER A.: Fast, Effective BVH Updates for Animated
Scenes. In Proceedings of the I3D conference (2012), ACM,
pp. 197-204. 1

[Leel0] LEE V. E. A.: Debunking the 100X GPU vs. CPU myth:
an evaluation of throughput computing on CPU and GPU. In Pro-
ceedings of the 37th annual international symposium on Com-
puter architecture (2010), ACM, pp. 451-460. 8

[MLO03] Masso J. P. M., LopEz P. G.: Automatic Hybrid Hi-
erarchy Creation: a Cost-model Based Approach. Computer
Graphics Forum 22, 1 (2003), 5-13. 2

[NVII2] NVIDIA: NVIDIA Nsight ver 2.2. NVIDIA developer
zone, 2012. 10

[PGDS09] Porov S., GEORGIEV I., DIMOV R., SLUSALLEK
P.: Object Partitioning Considered Harmful: Space Subdivision
for BVHs. In Proceedings of HPG 2009 (2009), ACM SIG-
GRAPH/Eurographics, pp. 15-22. 9

[RPC12] RoccCIA J.-P., PAULIN M., COUSTET C.: Hybrid
CPU/GPU KD-Tree Construction for Versatile Ray Tracing. In
Eurographics (Short Papers) (2012), Anddjar C., Puppo E.,
(Eds.), Eurographics Association, pp. 13-16. 2

[SFD09] STICH M., FRIEDRICH H., DIETRICH A.: Spatial Splits
in Bounding Volume Hierarchies. In Proceedings of HPG 2009
(2009), ACM SIGGRAPH/Eurographics, pp. 7-13. 2, 5,9

[Sz803] SZECSI L.: An Effective Implementation of the k-D Tree,
book Graphics Programming Methods. Charles River Media,
Inc., Rockland, MA, USA, 2003, pp. 315-326. 12

(© 2015 The Author(s)

Computer Graphics Forum (©) 2015 The Eurographics Association and John Wiley & Sons Ltd.

[VBHH13] VINKLER M., BITTNER J., HAVRAN V., HAPALA
M.: Massively Parallel Hierarchical Scene Processing with Ap-
plications in Rendering. Computer Graphics Forum 32, 8 (2013),
13-25. 2

[VH14] VINKLER M., HAVRAN V.: Register Efficient Mem-
ory Allocator for GPUs. In High-Performance Graphics 2014
(2014), Wald 1., Ragan-Kelley J., (Eds.), Eurographics Associa-
tion, pp. 19-27. 8

[Wal07] WALD I.: On fast Construction of SAH-based Bounding
Volume Hierarchies. In Proceedings of the IEEE/Eurographics
Symposium on Interactive Ray Tracing 2007 (Sept 2007), IEEE
Computer Society, pp. 33-40. 9

[WHO06] WALD I., HAVRAN V.: On building fast kd-Trees for
Ray Tracing, and on doing that in O(N log N). In Proceedings
of the IEEE/Eurographics Symposium on Interactive Ray Tracing
2006 (sep. 2006), IEEE Computer Society, pp. 61-69. 2

[WHGS84] WEGHORST H., HOOPER G., GREENBERG D. P.: Im-
proved Computational Methods for Ray Tracing. ACM Transac-
tions on Graphics 3, 1 (Jan. 1984), 52-69. 1

[WKO06] WACHTER C., KELLER A.: Instant Ray Tracing: The
Bounding Interval Hierarchy. In Proceedings of the 17th Eu-
rographics Conference on Rendering Techniques (2006), Euro-
graphics Association, pp. 139-149. 2,9

[WMG*09] WALD I., MARK W. R., GUNTHER J., BOULOS S.,
1ZE T., HUNT W., PARKER S. G., SHIRLEY P.: State of the Art
in Ray Tracing Animated Scenes. Computer Graphics Forum 28,
6(2009), 1691-1722. 2

[Wo0o04] WooP S.: A Ray Tracing Hardware Architecture for
Dynamic Scenes. Master’s thesis, Saarland University, Saar-
bruecken, Germany, March 2004. 3

[WZL11] Wu Z., ZHAo F., L1u X.: SAH KD-tree Construc-
tion on GPU. In Proceedings of HPG 2011 (2011), ACM SIG-
GRAPH/Eurographics, pp. 71-78. 2

[ZH10] ZLATUSKA M., HAVRAN V.: Ray Tracing on a GPU with
CUDA - Comparative Study of Three Algorithms. In Proceed-
ings of WSCG’2010, communication papers (Feb 2010), pp. 69—
76.2,8

