VIS-RT: A VISUALIZATION SYSTEM FOR RT
SPATIAL DATA STRUCTURES

Vlastimil Havran Libor Dachs Jiti Zara
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University, Karlovo ndm. 13
121 35 Prague, Czech Republic

{havran,xdachs,zara}@fel.cvut.cz

ABSTRACT

In this application paper we describe a system for visualization of spatial data
structures, that are used to accelerate ray shooting in global illumination. The
system has been implemented and further used to verify the correctness of spatial
data structures implementation, since for large and complex scenes the verification

is difficult or even impossible.

Keywords: ray shooting, visualization, spatial data structures.

1 INTRODUCTION

Many image synthesis algorithms use ray
shooting as sampling method of three-
dimensional space to obtain geometrical
properties of the scene. The visibility
determination is essential particularly for
modern photorealistic methods including
stochastic ones: Monte Carlo radiosity, In-
stant Radiosity, Metropolis Light Trans-
port etc. The time devoted to ray shoot-
ing can present a significant portion of to-
tal rendering time, since a large amount
of rays is needed to synthesize an image,
particularly for complex scenes.

Ray shooting problem is defined as fol-
lows: given a ray find its nearest intersec-
tion with objects in the scene. The trivial
solution would test every object for inter-
section with the ray in ©(n) time, where n

is the number of objects. Since this trivial
algorithm is unacceptable for any applica-
tion, many methods based on some type
of coherence reducing this time complex-
ity have been developed. This includes
mostly ray and spatial coherence [Arvo89).
At the present, it has not been proven that
any of this method is of prevalent perfor-
mance. The ultimate goal of research in
this area is to find out a method with best
performance and acceptable space com-
plexity, and prove this fact both theoreti-
cally and experimentally.

When implementing the existing methods
we found out that verifying the correct-
ness of the implementation in accordance
with required state is a difficult problem.
Since new methods are developed particu-
larly for large number of primitives, the re-
sulting data structures are very huge. The

implementation of any method has to pro-
cess any set of objects in the scene and
return correct result. If implementation
is incorrect, it can result in several fault

types:

e time complexity is worse than ex-
pected — difficult to detect, since
comparison with a reference solution
is even impossible, or there is no ref-
erence implementation available.

e incorrect results are returned — usu-
ally easier to detect, but the fault
can appear on a particular scene only,
that is usually unpredictable.

e memory complexity is worse than ex-
pected one — sometimes difficult to
detect.

e any combination of points above.

All these reasons have led us to a develop-
ment of a new system for visualization of
spatial data data structures for ray shoot-
ing. The system enables us to visualize a
spatial data structure regardless its type
in a uniform way. We are not aware of ex-
istence of any similar system developed for
such a purpose, that is main contribution
of this paper.

The paper is organized as follows: Sec-
tion 2 briefly recalls spatial data structu-
res for ray shooting. In Section 3 we de-
scribe the concept of visualization system
in detail. Section 4 presents several out-
puts of the system for particular scenes
and concludes the paper.

2 SPATIAL DATA STRUCTU-
RES

Many spatial data structures were devel-
oped for ray shooting [Arvo89], however,
survey including the development within
last ten years is missing. Usually, we
need a minimum bounding box enclosing

all the objects, that is used at the be-
ginning of the spatial data structure con-
struction. Let us recall commonly used
spatial data structures together with orig-
inal references:

o uniform grid [Fujim86] — the bound-
ing box is subdivided in all three
axes. The subdivision can be either
uniform or non—uniform. The num-
ber of voxels created is usually de-
rived from the number of objects in
the scene.

e BSP tree [Kapla85] — it is given a box
in each step of construction, that is
split into two child boxes of identi-
cal size, then construction continues
recursively. The splitting plane ori-
entation is regularly changed for all
three axes.

o kd-tree [Glass84] — similar to BSP
tree, but the splitting planes can be
positioned arbitrarily, mostly using
some cost function. This results in
child boxes of different sizes.

e octree [Samet88] — the box is sub-
divided into eight child boxes, then
construction continues recursively.

e hierarchy of grids — the basic prin-
ciple is that the cell of the uniform
grid is subdivided with another uni-
form grid. Three approaches were
published — RecGrid [Jevan89], Ada-
Grid [Klima97], and HUG [Cazal97].

e hierarchy of bounding volumes — each
node of hierarchy contains the list of
references to objects or its descen-
dants.

The common concept is subdivision of
space, either elementary or hierarchi-
cal. All the listed methods were de-
veloped in our rendering system named
GOLEM [GOLEM]. The hierarchy of

ASDS_Abstract

(BSII’_U) (Aslns) C B\llH D)

[| I I I |
(_Grid) ((GridA) (RecGrid) (ASDS_Meta) (AObjectList) (AObject)

Figure 1: Hierarchy of spatial data structures in GOLEM rendering system

these methods as implemented within the
GOLEM system is depicted in Figure 1.

There are several important aspects of
spatial data structure influencing the per-
formance of ray shooting algorithm in
global illumination applications:

e the subdivision density — how many
spatial cells should be created to
achieve the best performance 7 What
should be arity of tree data structure,
the termination criteria for building
such hierarchies ?

e data representation — either explicit
representation, hash tables, or other
special approaches for sparsely en-
gaged data structures.

e traversal algorithm — the traversal
code is essential for the performance
as well. Sequential, DDA, recursive,
and neighbour-link algorithms were
developed.

Although it could seem that in general
there is no difference between different
implementations, practically these details
are very important for application and re-
sulting performance. For example, there
have been about 18 papers written about
different octree algorithms for ray shoot-
ing purposes [Havra99.

Our goal was to developed such a visual-
ization system with graphical user inter-
face and portable to different operating

systems, that enables us to visualize ef-
ficiently any spatial data structure in the
uniform framework in real-time or inter-
active way.

3 VISUALIZATION SYSTEM

The requirements posed in the previous
section have many aspects. Let us now in-
troduce the designed system, named VIS—
RT, that tries to cover them all.

3.1 Uniform Framework

The concept of uniform visualization
framework is strongly connected with
the hierarchy of spatial data structu-
res. Mostly, advanced data structu-
res(hierarchical grids) use simpler data
structures (uniform grids). Generally,
such a concept is called meta—hierarchy
and it was introduced in [Arvo90], but we
are not aware of any real implementation
in the past. We implemented such a hi-
erarchy of different spatial data structu-
res within GOLEM system as depicted in
Figure 1.

Analysis of common properties of spatial
data structures has lead us to general node
properties:

e the node represents an azis—aligned
bounding bor with non—zero volume,

the geometric extent of the node is
stored in the node.

e the node contains list of references to
its child nodes, that have common in-
tersection with the box. This is re-
quired when node is interior node in
a hierarchy.

e the node contains list of references to
objects that are assigned to the node.
It is needed when node is a leaf of a
hierarchy.

e the node contains information about
the depth of the node in the original
hierarchy.

To fulfill all the requirements posed on
such a hierarchical node, we have used
general n—ary tree of bounding boxes, that
actually represents a hierarchy of bound-
ing volumes.

There are no further restrictions to the
node. Firstly, it means that children’s
bounding boxes of a given node can over-
lap. Secondly, the node can contain the
references to the objects and other hierar-
chical nodes at the same time. Such a gen-
eral node is not suitable for ray shooting
algorithm, since its ray traversal is rather
inefficient due to its generality. We use
this concept of general node just to emu-
late all the spatial data structures for vi-
sualization purposes.

System Description

The GUI interface of system was imple-
mented using Qt Library [QtLib], that is
portable GUI library running on different
UNIX and Windows platforms. OpenGL
was used for rendering of primitives in
three dimensions. The VIS-RT applica-
tion is built over GOLEM library, that
contains the spatial data structure algo-
rithms. The VIS-RT application enables
us to examine details of spatial data stru-
ctures with selected level of detail.

Input Data

There are two modes to obtain the in-
put data for the VIS-RT application. In
offline mode the spatial data structures
are generated within GOLEM system and
saved to a special format file. Later, the
data are loaded into the VIS-RT applica-
tion. In online mode, when the VIS-RT is
started, user can specify types and param-
eters for GOLEM library and the VIS-RT
generates spatial data structures without
restarting the VIS-RT application. Sim-
ilarly, the spatial data structures can be
then also saved to a file.

Viewing Modes

There are several viewing modes of spatial
data structures, that follow from a general
node requirements. The visualization pro-
gram uses three different, simultaneously
displayed windows.

e node window — just one general node
of the hierarchy is displayed and
highlighted in a list box. Such a node
is called active node in the VIS-RT
application, since it is connected with
other nodes. User can traverse the hi-
erarchy down to a selected node, up,
and directly to the root. The geomet-
rical extent of the node and its depth
in the original hierarchy is displayed.

e graphical window — displays the spa-
tial data structures with or with-
out the scene objects in perspective
or parallel projection, active node is
highlighted.

e tree window — the hierarchy is visu-
alized as acyclic graph, active node
is again highlighted. A user can se-
lect active node of hierarchy in this
window.

The node and graphical window are al-
ways displayed. The tree window is dis-
played on a user’s request.

Tree Window

[=] B3

{ Root - HUG: 2%, 1y, 1z

Meta: 3 nodes

GridA: 34%, 9y, 82 F

ObjlList: 1 objs F

Sphere [-0.29, 0, 0] r=0.088)

Grida: 34x, 9y, Bz)

Meta: 2 nodes }ﬁ

ObjList: 38 objs F

Figure 2: An example of tree window in the VIS-RT application

There are five display modes to visual-
ize/traverse spatial data structures:

e iree mode — a user traverses the spa-
tial hierarchy in node or tree win-
dow; the traversal can influence the
visualization in graphical window ac-
cording to the selected camera mode
described below. This mode is basic
traversal mode, that has been shown
the most useful.

e path mode — a user can view only the
nodes on the path from the root node
to an active node. Active node is se-
lected in the node or the tree window.

e [evels mode — a user can view the ex-
tent of details of selected level just
to make an initial estimate about the
spatial data structure and its com-
plexity. In this mode all the bound-
ing boxes up to the selected levels are
displayed.

e object mode — this mode serves to get
information about the object. A user
can select object in all the modes,
then system highlights all the nodes
where object is directly referenced. It
is especially suitable to verify the cor-
rectness of spatial data structures.

o scene mode — the mode is similar to
tree mode, but it displays only the
part of the hierarchy and objects in
region of interests. This region is a
bounding box specified by a user, so

all the bounding boxes having com-
mon intersection with the region of
interests are displayed.

We have found out the tree/scene mode
the most useful in general, the object
mode for debugging the correctness of spa-
tial data structures.

Camera positioning in space for graphical
window has been shown also very impor-
tant. Right camera setting can greatly im-
prove user’s orientation. A user arbitrarily
selects from three camera modes:

e center — camera is oriented to the
center of the scene. The position of
the camera can be changed by a user
interaction. The whole scene is al-
ways displayed.

e adaptive — similar to center; the ac-
tive node is always zoomed to cover
the whole window and the camera is
centered to the center of active node.

e [ocal — general positioning of camera
position, orientation, and zoom.

It is also possible to reset the viewing po-
sition to the initial viewing position, that
is specified in the scene description.

A user arbitrarily selects the type of ren-
dering for both spatial data structures

and the objects in the scene. This se-
lection is identical with the OpenGL fea-
tures: flat shading, Gourad shading, wire-
frame mode, and disabled rendering. Ad-
ditionally, it has been shown practical that
the rectangles of the bounding boxes can
be also rendered transparently with alpha
channel.

Other Features

To further improve visualization of re-
quired features of spatial data structures
extending features were implemented.

First, the VIS-RT application contains
specific support for level of detail. It is
performed with the two thresholds. One
threshold is for the size of a bounding box,
one is for the level within the hierarchy.

Second, we have found out interesting to
compare the different spatial data structu-
res for the same scene. For this purpose,
the visualization of spatial data structu-
res can be run in the tracking mode. The
application run as first one is in master
mode. All of the successive application
can run in the slave model; they track
the camera positioning of the master win-
dow. User can then view several spatial
data structures on the same scene with the
same camera setting.

Third, a user can specify arbitrary color
settings for all the important features of
graphical window. This setting can be
saved/loaded to/from a file.

Fourth, a user can select arbitrary object
in the scene and hide it from the graphical
window.

4 RESULTS AND CONCLUSION

We implemented the VIS-RT and veri-
fied that it is useful for designed pur-
poses. Several results of visualization are

depicted on Figures 2, 3, 4, 5, and 6. The
VIS-RT enables us to examine effectively
local and global properties of spatial data
structures for ray shooting. Several imple-
mentation bugs in the spatial data stru-
ctures were really found out. For exam-
ple, there have been singularities of inter-
section an object with the node geomet-
ric extent for octree; the leaves of octree
only touching the objects also contained
the references to the objects, that made
worse performance for ray shooting.

Application of VIS-RT application to spa-
tial data structures is restricted only by
properties of general node; it covers all the
spatial hierarchies introduced up to now.
At the present, the results of visualization
are used to design new and more efficient
spatial hierarchies with good performance
for huge number of primitives and sparsely
occupied scenes.

Acknowledgment

This project has been supported
by Czech—Austrian scientific cooperation
grant Aktion number 1999/17.

=

Figure 4: The VIS-RT application
with node and graphical window

REFERENCES
[Arvo89] Arvo, J., Kirk, D.: A survey of

ray tracing acceleration techniques,

Figure 3: Visualization of a simple scene (a) uniform grid (b) kd-tree

In An Introduction to ray tracing,
pp. 201-262, Academic Press, 1989.

[Arvo90] Arvo, J.:Ray Trac-
ing with Meta—Hierarchies, Course
Notes, SIGGRAPH’90, 1990.

[Cazal97] Cazals, F. and
Puech, C.:Bucket-like space parti-
tioning data-structures with appli-
cations to ray-tracing. In 13th ACM
Symposium on Computational Ge-
ometry, pp. 11-20, Nice, 1997.

[Fujim86| Fujimoto, A. et al: ARTS:
Accelerated ray tracing system. In
IEEE Computer Graphics and Ap-
plications, Vol.6, No.4, pp. 16-26,
1986.

[Glass84| Glassner, A.S.: Space subdivi-
sion for fast ray tracing. In IEEFE
Computer Graphics and Applica-
tions, Vol.4, No.10, pp. 15-22, 1984.

[GOLEM| GOLEM rendering system,
http://www.cgg.cvut.cz/ GOLEM,
1996-99.

[Havra99] Havran, V.: A Summary of Oc-
tree Ray Traversal
Algorithms, in Ray Tracing News,

http://www.acm.org/tog/resources/
RTNews/html/rtnv12n2.html,
Vol.12, No.2, 1999.

[Jevan89] Jevans, D. and Wyvill, B.:
Adaptive voxel subdivision for ray
tracing. In Proceedings of Graphics
Interface ’89, pp. 164-172, 1989.

[Kapla85] Kaplan, M.: Space-Tracing: A
Constant Time Ray-Tracer. In SIG-
GRAPH’85 State of the Art in Im-
age Synthesis seminar notes, 1985.

[Klima97] Klimaszewski, K.S., and Seder-
berg, T.W.: Faster ray tracing using
adaptive grids. In IEEE Computer

Graphics and Applications, Vol.17,
No.1, pp- 42-51, 1997.

[QtLib] Qt Library, GUI C++ portable
library, http://www.troll.no, 1994
999.

[Samet88] Samet, H., Webber, R., E.: Hi-
erarchical data structures and algo-
rithms for computer graphics, IEEE
Computer Graphics and Applica-
tions, Vol.8, No.4, pp.59-75, 1988.

Vizualization of spatial data structures [_[O]x

File Camera View

[Root - BSF Level: 0 [[Box: [-0.0218, -0.0218, -0,021810L,02, JCamera: (0,13, -12, 01, (-1.8, -10, —20) |
Level ‘\' % } '

5
Level B
Lewel 7

g
3

Level
Level

Level 10
Level 11
Level 12

Level 15
Lewel 16
Level 17

— Draw object
“* Enable
~ Disable

— Mode

w Tree
~ Path
 Levels
w Object
~ Scene

— Objects

4 Gouraud shading
« Flat shading
v Wireframe

~ Disahle

— Planes

+ Gouraud shading
« Flat shading
« flpha mode

A Wireframe

~ Dizable

Figure 5: Perspective projection for benchmark scene lattice

Vizualization of spatial data structures o [m] 3

File Camera View

[Root - AdaGrid Levels 0 |[Bow: [-B0, B0, -0,0001050, 50, 3,141 |[Cameras ¢-0,28, 0,46, .4, (-25, -43, O |

GridAs 21x, 16y, 24z
Polygon with 4 wvertices

— Drauw object
4 Enable
~ Dizable

— Hode

A Tree
~ Path
v Levels
w Object
~ Scene

il Scene Bounding Box [%]
— Objects

“* Gouraud shading Minimal values:
«w Flat shading
< Wirefrane

v Disahle Maximal values:

7 b] v |2 z [Fo.o01

— Planes ——————— X |3 Y |3 4 |3.14
+ Gouraud shading
« Flat shading
+ Alpha mode Ok |
A Wireframe
~ Dizahle

Cancel | Refresh |

Figure 6: Tree mode for benchmark scene tree, and the dialog for level of detail.

