Computer Graphics Group, MPI Informatik, Saarbrücken, Germany

Goniometric Diagram Mapping for Hemisphere

Vlastimil Havran and Kirill Dmitriev and Hans-Peter Seidel MPI Informatik, Saarbrücken, Germany

- Introduction: importance sampling, goniometric diagram.
- Algorithm outline.
- Detailed explanation of mapping phases.
- Results, future work, and applications.

Introduction - PDF

Probability Density Function (PDF)

PDF properties for continuous random variable p(x):

- $p(X) \ge 0 \quad \forall X$
- Estimator for integration of unknown f(x): $\langle I \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{n(x_i)}$
- Uniform sampling

f(x)p(x)

Importance sampling versus

2

12 13

11

14

16

17 18

19 20

21

23

Introduction - Goniometric Diagram

Goniometric Diagram for Hemisphere

- N parallels ($\phi = const$) and M meridians ($\theta = const$)
- PDF given at key points.

Mapping

- $\vec{Y} = f(X), \quad X \in \mathbb{R}^2.$ (from unit square to hemisphere).
- bijective (unique).
- bicontinuous.
- with fast importance sampling.

Algorithm Outline

New Composed Mapping

Properties of the proposed "algorithmic mapping".

- ullet Mapping M_B and M_E introduced in CG by Shirley, 1992.
- Mapping M_C and M_D is the new solving the integral equation on the fly.
- Whole mapping is approximative with guaranteed error.

Mapping M_B

Mapping M_B continued

Detailed algorithm in JGT'97, Vol.2, No. 3, page 45-52. by Peter Shirley and Kenneth Chiu

Basic Principle and Properties

- Determine the quadrant of a point X and remap to a disk sector.
- Preserves the adjacency and fractional area.
- Exhibits low distortion.
- Original algorithm modified to provide ϕ in range $\phi \in \langle 0, 2 \cdot \pi \rangle$

Mapping M_E

In CG originally introduced by Peter Shirley, 1992

$$T_D = (r_D, \phi_D)$$

 $r_D \text{ in } <0, 1>$
 $\phi_D \text{ in } <0, 2.\pi >$

$$T_E = (\theta_E, \phi_E)$$

 θ_E in <0, $\pi/2 >$
 ϕ_E in <0, $2.\pi >$

Mapping M_E continued

Properties

- Density from 2D to 3D is multiplied by constant 1/2.
- Preserves the adjacency and fractional area.
- Does not preserve linearity of mapping from radius to angle!

Formulas

 $x = u.\sqrt{2 - u^2 - v^2}$ $y = v.\sqrt{2 - u^2 - v^2}$ $z = 1 - u^2 - v^2$ $u, v \in \langle -1, 1 \rangle \times \langle -1, 1 \rangle$

or

$$\phi_E = \phi_D$$

$$\theta_E = \arccos(1 - r_D^2)$$

$$r_D \in \langle 0, 1 \rangle$$

Mapping M_D

is solving the integral equation on the fly + binary search for parallels.

$$T_c = (r_c, \phi_c)$$

 r_c in <0, 1>
 ϕ_c in <0, 2. π >

$$T_D = (r_D, \phi_D)$$

 $r_D \text{ in } <0, 1>$
 $\phi_D \text{ in } <0, 2.\pi >$

Mapping M_D continued

- ullet $\phi_D = \phi_C$ (inside one sector on a 2D disk).
- radius r_D computed from radius r_C , solving the integral equations for piece-wise linear PDF function d(x):

$$d(x) = (d_{j+1} - d_j) \cdot \frac{x - x_j}{x_{j+1} - x_j} + d_j, \quad x \in \langle x_j, x_{j+1} \rangle$$

$$\int_{x=x_j}^X d(x) \cdot (2 \cdot \pi \cdot x) \cdot dx = \int_{y=y_j}^Y s \cdot (2 \cdot \pi \cdot y) \cdot dy$$

For precomputation given x_j and x_{j+1} we need:

$$\int_{x=x_j}^{x_{j+1}} d(x) \cdot (2 \cdot \pi \cdot x) \cdot dx = \int_{y=y_j}^{y_{j+1}} s \cdot (2 \cdot \pi \cdot y) \cdot dy$$

Mapping M_D continued

• Case $\phi = const$:

Initial condition: $x_0 = y_0 = 0$ (center of the disk).

Mapping M_D continued

■ Integral equation leads to cubic equation with respect to x_{j+1} :

$$(y_{j+1})^2 = \frac{d_{j+1}}{s} \cdot (x_{j+1}^2 - x_j^2) + \frac{d_j - d_{j+1}}{s \cdot (x_{j+1} - x_j)} \cdot (\frac{1}{3}x_{j+1}^3 - x_{j+1} \cdot x_j^2 + \frac{2}{3} \cdot x_j^3) + y_j^2$$

- Cardan's formulae are used for cubic equation above (analytical solution).
- The solution in square form can be linearly interpolated for neighboring ϕ angles!
- Precomputation phase requires to store the $N \times M$ values.
- Binary search $\mathcal{O}(\log N)$ is used for N parallels.

Mapping M_C

- Both radius r and angle ϕ are changed.
- Intuition: Necessary to avoid rejection sampling in radius direction, input is constant density, output has required density.

$$T_{B} = (r_{B}, \phi_{B})$$

 r_{B} in <0, 1>
 ϕ_{B} in <0, 2. π >

$$T_c = (r_c, \phi_c)$$

 r_c in <0, 1>
 ϕ_c in <0, 2. π >

Mapping M_C continued

Mapping corresponds to solving (another) integral equation.

$$\int_{\phi=0}^{\beta^{i}} \int_{r=0}^{r_{u}} r \cdot d\phi \cdot dr = \int_{\phi=0}^{\gamma^{i}} \int_{r=0}^{\sqrt{\frac{1}{s^{i} \max}} \cdot U(i_{\max}, N-1)}} r \cdot d\phi \cdot dr,$$

where

$$r_u = \sqrt{(1 - \frac{\phi}{\beta^i}) \cdot \frac{1}{s^i} \cdot U(i, N - 1) + \frac{\phi}{\beta^i} \cdot \frac{1}{s^{i+1}} \cdot U(i + 1, N - 1)}.$$

Mapping M_C continued

■ Solving integral equation results in a quadratic equation with single root with respect to the unknown variable ϵ :

$$(\epsilon)^2 \cdot \left[\frac{\beta^i}{2} \cdot \left(\frac{1}{s^{i+1}} \cdot U(i+1, N-1) - \frac{1}{s^i} \cdot U(i, N-1) \right) \right] +$$

$$\epsilon \cdot \left[\frac{\beta^i}{s^i} \cdot U(i, N-1) \right] - \gamma(\phi_B) \cdot \frac{1}{s^{i_{\max}}} \cdot U(i_{\max}, N-1) = 0$$

- In precomputation we solve the equation for input values, resulting in M precomputed values for M meridians.
- During the mapping, we perform binary search with the time complexity $\mathcal{O}(\log M)$.
- Mapping property: the power over a sector of the disc remains constant before and after mapping M_C !

Whole Mapping Review

Properties of approximative hemispherical mapping:

- Bicontinuous, bijective (unique) mapping from a unit square to a hemisphere, where PDF is given by a goniometric diagram.
- Mappings M_B and M_E : low distortion, preserves fractional area, modify the density multiplicatively by constants.
- Mappings M_C and M_D : solving the integral equation analytically on the fly, requiring a binary search with time complexity $\mathcal{O}(\log M + \log N)$

Implementation and Results

Properties:

- To our best knowledge, the first algorithm for this problem it cannot be compared to rejection sampling, since no samples are rejected!
- Memory cost for the representation: M.N+2.M+2 floating point values. Original PDF requires M.N+N floating point values.
- Time complexity is $O(\log M + \log N)$.
- Guaranteed distance to exact PDF. It can be compensated by intensity of samples in the range -20 to +25%, however for typical goniometric diagram as small as -4 to +4%.
- Speed on PC, Intel 2.6 GHz is about 332,000 mapped samples per second, including QMC Halton sampling, base 2 and 3.

23

Results - continued

Results - continued

Comparison with rejection sampling.

Results – continued

Results for 1024 tested goniometric diagrams.

Results - Inverse Mapping

Properties:

- Time complexity again $O(\log M + \log N)$
- Much simpler analytic formulas.
- Speed on PC, Intel 2.6 GHz is about 6,700,000 mapped samples per second, with QMC Halton sampling, base 2 and 3, about 20 times faster than for forward mapping!

Future Work and Applications

- Native Importance sampling of point/area light sources described by goniometric diagram.
- Bidirectional Reflectance Distribution Function (BRDF) importance sampling for isotropic and anisotropic tabulated BRDFs.
- Extension from hemisphere to the full sphere.
- For inverse mapping texture mapping of weakly convex objects

Hopefully some others - principle is general.

Acknowledgements

belongs to

- Karol Myskowski and Jaroslav Křivánek for their remarks.
- Cyrille Damez for proofreading the paper.
- RealReflect project IST-2001-34744 for partial support.
- Peter Shirley for original algorithm with constant density.
- Anonymous reviewers, EG'2003 full papers, for their remarks.

Computer Graphics Group, MPI Informatik, Saarbrücken, Germany

QUESTIONS?

- NOW Do not worry!
- Look into the paper. Maybe read twice. Sorry about the math.
- E-mail to me: Vlastimil Havran

WWW http://www.mpi-sb.mpg.de/~havran

E-mail: HAVRAN@MPI-SB.MPG.DE

ı
2
3
4
5

[back]