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Abstract

The Bidirectional Texture Function (BTF) is becoming widely used for accurate representation of real-world mate-
rial appearance. In this paper a novel BTF compression model is proposed. The model resamples input BTF data
into a parametrization, allowing decomposition of individual view and illumination dependent texels into a set of
multidimensional conditional probability density functions. These functions are compressed in turn using a novel
multi-level vector quantization algorithm. The result of this algorithm is a set of index and scale code-books for
individual dimensions. BTF reconstruction from the model is then based on fast chained indexing into the nested
stored code-books. In the proposed model, luminance and chromaticity are treated separately to achieve further
compression. The proposed model achieves low distortion and compression ratios 1 : 233−1 : 2040, depending
on BTF sample variability. These results compare well with several other BTF compression methods with prede-
fined compression ratios, usually smaller than 1 : 200. We carried out a psychophysical experiment comparing
our method with LPCA method. BTF synthesis from the model was implemented on a standard GPU, yielded
interactive framerates. The proposed method allows the fast importance sampling required by eye-path tracing
algorithms in image synthesis.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shading, texture I.4.1 [Image Processing and Computer Vision]: Digitization and Image
Capture—Quantization, Reflectance

Keywords: bidirectional texture function, BRDF, compression, SSIM

1. Introduction

Realistic visualization of surface appearance has been one
of the main challenges in computer graphics since the early
eighties. Nowadays, with constantly increasing capabilities
of graphics hardware, increasing attention is paid in almost
all industrial sectors to such applications as computer vi-
sual safety simulations and computer aided material design.
All these applications require realistic reproduction of mate-
rial behavior under complex illumination and viewing con-
ditions.

One method to capture real material appearance is based
on the measurement of reflectance with respect to varying
light and viewing directions. This so called Bidirectional Re-

flectance Distribution Function (BRDF) was first described
in [NJH∗77]. BRDF has been compressed and approximated
by a variety of empirical and analytical models in the past
[LGC∗05]. The BRDF itself does not preserve texture in-
formation, so it is suitable only for homogeneous materials.
However, a large number of real, rough surfaces have a com-
plicated spatial structure that causes effects such as shadow-
ing, masking, inter-reflection, and subsurface scattering, all
of which vary with illumination and viewing directions.

To preserve at least some of these effects, a new rep-
resentation of real-world materials, the Bidirectional Tex-
ture Function (BTF), was presented in [DvGNK99]. A
monospectral BTF is a six-dimensional function which, un-
like BRDF, accounts for the dependence of viewing and illu-
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mination measurements on planar material position. An ap-
propriately measured BTF contains information about ma-
terial properties as anisotropy, masking, or self-shadowing.
Examples of rendered images using BTF are depicted in
Fig. 1.

In contrast to BRDFs, BTF requires a very large amount
of data storage. BTFs take up to several giga-bytes per sam-
ple in raw format. The storage space requirements of raw
BTF data prevents their direct use for fast rendering in
modern graphics hardware. Hence a BTF data compression
that produces a compact representation is necessary. Such a
method should provide:

• reasonably high compression ratios,
• fast random access data synthesis (convenient for GPU

implementation and rendering algorithms),
• fidelity comparable with existing BTF compression al-

gorithms.

In addition, the method should allow fast importance sam-
pling for high-quality rendering applications using path-
tracing algorithms, and spatial enlargement of measured
BTF samples. The processing/workflow pipeline for BTF
data is shown in Fig. 2.
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Figure 2: BTF data processing pipeline.

Contribution of the paper. In this paper we present a novel
BTF compression technique based on efficient multi-level
vector quantization, allowing fast importance sampling for
a given viewing direction as well as efficient multi-sample
compression into a single shared database. This can be used
efficiently in rendering algorithms such as path tracing. To
our knowledge there is no other BTF compression method
that has these features.

The rest of the paper is organized as follows: The follow-
ing section describes the basic terminology used in the pa-
per. Section 3 outlines prior work in the fields of BTF com-
pression and importance sampling. Section 4 explains indi-
vidual parts of the proposed model. Section 4.1 proposes a
novel BTF data parametrization and interpolation. In Sec-
tion 4.2 a vector quantization algorithm of interpolated data
is explained, and this is followed by a description of a novel
multi-level vector quantization method introduced in Sec-
tion 4.3. Section 4.4 discusses a similarity measure applied
throughout the model for BTF and BRDF data. Section 4.5
describes the use of scalar quantization to achieve further
compression. The GPU implementation is briefly described
in Section 4.6. Properties of the model and its application
to fast importance sampling are discussed in Section 5. The

results of our method are described in Section 6. A compar-
ison of the method with other existing methods is shown in
Section 7. Section 8 concludes the paper.

2. Basic Terminology and Notation

In this section we describe basic terminology and notation
used in the paper. The incoming light direction is denoted
by ωi = [θi,ϕi] and viewing direction by ωv = [θv,ϕv].
BRDF is a four-dimensional function BRDF(ωi,ωv) and has
two main important properties [DF97]. The first one is the
Helmholtz reciprocity rule stating that if the illumination and
viewing direction are reversed, the value of the BRDF should
not change. The second property is the energy conservation
law, which states that the ratio of total outgoing radiance
from the material and incoming total radiance from the light
sources must be less than or equal to one for all possible
illumination directions.

Monospectral BTF is a six-dimensional function,
BT F(x,ωi,ωv), which unlike BRDF, accounts for the
dependence of viewing and illumination measurements on
planar material position x = [x,y]. BTF can be decomposed
into a set of illumination and viewing direction dependent
texels specifying pixel-wise BRDFs. We will describe such
a texel as an apparent BRDF and denote it as Fx(ωi,ωv)
in this paper. Contrary to BRDF, due to visual masking,
shadowing, etc. effects the apparent BRDF does not fulfill
the Helmholtz reciprocity rule [MMS∗04], i.e. the role of
illumination and viewing direction cannot be interchanged
without any effect on a reflectance value. In general the
energy balance is also not preserved. This happens due
to such effects as occlusion and masking or subsurface
scattering inside a rough material structure.

3. Previous Work

In this section we review relevant BTF compression methods
and importance sampling algorithms for reflectance data.

3.1. BTF Compression Methods

Since the main purpose of this paper is to introduce a novel
BTF compression technique we discuss here the principles
and basic properties of methods for BTF compression. These
methods can be roughly divided into the three following
groups.

The first group is based on linear basis decomposi-
tion. This approach was presented by Koudelka et al. in
[KMBK03]. Individual BTF images are ordered into the
columns of a matrix. The corresponding symmetric matrix
is created and subsequently decomposed using SVD. The
compression method of [VT04] decomposes BTF space,
ordered into tensor, by means of multi-modal SVD. Even
though both methods enable realistic BTF rendering, they
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Figure 1: Example images rendered by the proposed BTF compression methods for illumination by point light and by different
environment maps.

are not suitable for fast BTF applications since they re-
quire linear combinations of a large number of components.
In [SSK03] the principal components for BTF images with
the same view position are computed separately. [MMK03b]
exploited vector quantization of BTF data-space while each
resulting cluster was represented by a local PCA model. This
method was also applied for compression of psychophys-
ically reduced BTF data in [FCGH08]. Another BTF vec-
tor quantization approach based on azimuthal rotation of
resampled data Fx was mentioned in [KM06]. In [LM01]
introduced a BTF recognition method that captured surface
appearance under different illumination and viewing condi-
tions by using 3D textons constructed by means of K-means
clustering of responses to selective linear filters applied at
individual planar positions in BTF. This idea was exploited
by [TZL∗02] for BTF compression and fast rendering. The
same authors [LZT∗04] extended the method with a scheme
for reduction of response vectors based on SVD. [MCT∗05]
presented an approach for BTF LOD rendering based on a
Laplacian pyramid of resampled BTF data compressed by
PCA. Recently, [RK09] applied K-SVD algorithm to decom-
pose a massive BTF data tensor into a small dictionary and
two sparse tensors.

The next group of compression methods represents BTF
by means of analytical reflectance models. The pioneer-
ing work was done by [MLH02], who represented the re-
flectance of each pixel in BTF using the Lafortune re-
flectance lobes [LFTG97] parametrized by both view and
illumination direction. A similar method using an additional
look-up table to scale reflectance lobes and handle shad-
owing and masking was published in [DLHS01]. The spa-
tial inconsistency of individual pixels in BTF for different
view directions led to separate modeling of BTF images
corresponding to only one view direction. [MGW01] rep-

resented each pixel in BTF by means of per-pixel polyno-
mials. [MMK03a] fit BTF by several pixel-wise Lafortune
lobes for fixed viewing direction. The lobes are used only
for fitting luminance values, which are used to modulate an
albedo-map of individual color channels. In [FH05] only one
lobe is used per color channel. The obtained results are then
corrected by means of polynomials representing histogram
matching functions between original and restored images.
A similar method proposed in [ND06] uses a combination
of histogram matching and steerable pyramids for sparsely
sampled BTF compression. The BTF compression technique
proposed in [MCC∗04] models average BTF reflectance by
the Phong model. Differences between the model and the
original BTF are stored in residual BTF textures that are
approximated by appearance perturbation parameters. BTF
volumetric compression by a stack of semi-transparent lay-
ers through the surface texture was presented in [MK06].

The final group of compression methods achieved even
better compression ratios and were based on probabilistic
BTF modeling [HF07]. All of these models approximate
a regular rough structure dependent on illumination posi-
tion by means of a combination of a displacement filter and
Markov random field-based texture synthesis of BTF sub-
set images. Although these methods allow synthesis of arbi-
trary resolution BTFs, and reach impressive compression ra-
tios, they sometimes compromise the visual quality of highly
non-Lambertian materials. These methods also do not allow
fast data synthesis for random access of individual appar-
ent BRDFs. A recent comparison of some of the methods
reviewed here is shown in a BTF survey paper [FH09].

Although all the above mentioned methods allow very
fast BTF rendering, they mostly achieve relatively moder-
ate compression ratios, less than 1:200. Only some of them
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allow fast GPU implementation, only two ( [LM01, KM06])
use a variant of vector quantization, and only a few of them
allow importance sampling of BTF without reconstruction.
Our method is designed to provide all the features required
for CPU-based and GPU-based rendering algorithms.

3.2. Importance Sampling

For random walk algorithms [DBB03] such as path tracing
and bidirectional path tracing an efficient importance sam-
pling algorithm according to material reflectance is neces-
sary to reduce the variance of integral estimates.

Below we review the most relevant work on importance
sampling for BRDF data. Lawrence et al. [LRR04] described
the method of fast importance sampling of BRDF based on
non-negative matrix factorization. The terms of this factor-
ization are then used for the computation of cumulative dis-
tribution functions (CDF). This method provides much bet-
ter results for the same number of samples than sampling
based on CDF computation using analytical BRDF models,
and a more compact representation than sampling based on
tabulating the full BRDF. Another technique for reducing
the size of tabulated CDF, by one to three orders of magni-
tude, based on a curve approximation algorithm is presented
in [LRR05]. Another method based on non-linear PCA is
presented in the thesis of Matusik [Mat03, p.107].

To the best of our knowledge, no other paper achieves fast
importance sampling of highly compressed BTF data. Obvi-
ously, the importance sampling of BTF can be implemented
for any BTF compression method by the inverse transform
method [Fis96, DBB03] reconstructing apparent BRDF and
computing CDF. We tested such an approach for [SSK03];
it is about 300 times slower than the direct support of BTF
importance sampling in the proposed compression model.

4. A Novel BTF Model

The scheme of the proposed BTF model is shown in Fig. 3.
The compression scheme is based on subsequent decompo-
sition of 4D, 3D, 2D, and 1D dimensional slices of BTF
data. These slices are obtained by resampling original BTF
data to a novel parametrization of illumination and viewing
directions. The model’s compression is achieved by vector
quantization of slices to individual dimensions to obtain a
set of code-books. These code-books work as nested look-
up tables of indices and scales of the individual slices while
only the code-books at the lowest level contain the resam-
pled original BTF data.

4.1. Model Parametrization

The key motivation of the model was to propose a light di-
rection parametrization over a hemisphere that enables not
only efficient data compression but also fast rendering and

importance sampling. In addition, as the proposed model de-
composes the function to parts in the individual dimensions
separately, we want to align the data at these individual di-
mensions.
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Figure 4: Illumination direction parametrization over a
hemisphere.

We considered several different parametrizations pro-
posed for BRDFs e.g., half-angle parametrization by
Rusinkiewicz [Rus98], by Stark et al. [SAS05], and Edwards
et al. [EBJ∗06]. However, we decided to abandon them for
three reasons. First, the published parametrizations do not
preserve monotonicity between the generated direction and
the bivariate uniform variable in the input domain. That is,
when we generate a similar pair of random numbers we want
to get a similar generated direction for all random pairs.
This is discussed in more detail in Section 5.2. Although,
parametrization proposed in [HDS03] preserves the mono-
tonicity it would be complicated to use it the proposed multi-
level quantization scheme. Second, many BTF samples have
distinct properties from BRDF samples. We found experi-
mentally by visualization that since BTF also captures the
geometry of the surface, the alignment of the data features is
not the same as for BRDF data measured on a smooth sur-
face. Typically, there can be several specular highlights that
are not aligned with the direction of an ideal reflected ray.
Therefore the conditions are not satisfied under which other
parametrizations such as halfway vector disk parametriza-
tion [EBJ∗06, SAS05, Rus98] were proposed. The third rea-
son is that we want to compress not only one but many appar-
ent BRDFs. We want to align their perceptually similar fea-
tures as we expect similarity among apparent BRDFs across
a BTF sample. Hence the design of the parametrization pro-
posed here specifically for BTF data compression is tightly
coupled with a multi-level vector quantization method de-
scribed in Section 4.3.

A B A B

β βδ

δ

(a) uniform in β (b) uniform in cos(β)
Figure 5: Sample points distribution along the 1D slice.

The proposed parametrization defines BTF slices that can
be represented as conditional probability density functions
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Figure 3: The proposed BTF model scheme illustrating dependencies of individual VQ code-books.

(PDF). These PDFs are treated as input data into the vector
quantization scheme proposed in the Section 4.2.

The proposed [α,β] parametrization is based on an "onion
slices" concept of a hemisphere of illumination directions,
as illustrated in Fig. 4. The hemisphere is divided into a
set of meridian slices running between points A and B ly-
ing at its bottom part. Each slice is parametrized by angle
β ∈ 〈−π/2,π/2〉 with a zero value at the upper pole E of the
hemisphere. A uniform placement of individual 1D slices
over a hemisphere is controlled by angle α ∈ 〈−π/2,π/2〉
with zero value at the upper pole as well. A mappingM be-
tween standard hemispherical [θ,ϕ] parametrization and the
proposed [α,β] parametrization can be stated as follows:

M(θ,ϕ) → {α,β} (1)

θ ∈ 〈0,π/2〉 α ∈ 〈−π/2,π/2〉
ϕ ∈ 〈0,2π〉 β ∈ 〈−π/2,π/2〉 .

A corresponding unit 3D directional vector can be specified
by means of the [θ,ϕ] and [α,β] parametrization respectively
as

[x,y,z] = [cosϕ · sinθ, sinϕ · sinθ, cosθ] (2)

[x,y,z] = [sinβ, sinα · cosβ, cosα · cosβ] .

While the illumination direction ωi is specified by

[α,β], the viewing direction ωv is given by standard [θ,ϕ]
parametrization only resampled to regular sampling steps of
angles θ and ϕ. On one hand this resampling causes dense
sample distribution near the pole of the hemisphere but on
the other hand it allows direct factorization of samples along
angles θv and ϕv. Such a resampling consequently allows
better compression of underlying data samples.

Now we describe how Fx is resampled from original
spherical parametrization θ

′
i ,ϕ
′
i ,θ
′
v,ϕ
′
v:

{α,β,θv,ϕv}←M(θ′i ,ϕ
′
i ,θ
′
v,ϕ
′
v) (3)

θv = θ
′
v β = arcsin(sinθ

′
i · cos(ϕ′i−ϕ

′
v))

ϕv = ϕ
′
v α = arccos

(
cosθ

′
i

cosβ

)
.

Note that the hemisphere is oriented in such a way that an
outline between points A and B is always perpendicular to
the azimuth of viewing direction ϕv. Such an arrangement
guarantees that the ideal mirrored reflection is embedded in
the plane given by points D, C, and E (i.e., when β = 0).
This means that the highest probability of a steep change in
reflectance is in the middle of the slice, so this part should be
sampled more densely than its tails. Additionally, we need to
achieve equitable distribution of samples on the hemisphere
in [α,β] parametrization. Due to this reason the sample dis-
tribution along β slice is not chosen uniformly according to β
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angle shift (Fig. 5(a)), but uniformly in cosβ so that the pro-
jection of the samples is equidistant as shown in Fig. 5(b).
The poles A and B are accounted only once for 2D PDF.
These arrangements enable more uniform sampling of the
illumination hemisphere and avoid dense sampling near the
points A and B (see Fig. 4).

In this paper, BTF data from [SSK03] were used. These
data provide uniform distribution of measurement points in
at 81 illumination and 81 viewing angles over the hemi-
sphere. Such a distribution is obtained by using variable
quantization of azimuth angle ϕ for individual elevation an-
gles θ. These BTF data were resampled into proposed illu-
mination [α,β] and viewing [θv,ϕv] direction parametriza-
tion by means of a two-step interpolation scheme based on
radial basis functions [CBC∗01]. In the first step, the data
for all illumination directions ωi and the fixed viewing di-
rection ω

′
v = [θ′v,ϕ

′
v] are interpolated, and these interpolated

values for all combinations of α and β angles are then inter-
polated into a new ωv = [θv,ϕv] viewing direction discretiza-
tion. The resulting data (see example in orange part of Fig. 3)
are then used as direct input into the proposed multi-level
vector quantization based BTF model.

4.2. Vector Quantization

The proposed BTF compression model is based on the prin-
ciple of lossy block coding often referred to as vector quan-
tization (VQ) [GG92]. VQ is based on an assumption that
a set of data vectors can be represented by its representative
subset – the code-book. This subset is obtained by represent-
ing similar vectors m by a suitable code-vector m̂ according
to a predefined maximal allowed distance. The similarity be-
tween them is defined by a distance measure d(m, m̂)> 0.

Let us mention the important theorem for lossy compres-
sion methods related to our work [GG92, p.313]: When the
code-book is set optimally then no other coding system ex-
ists that can do better than VQ. So a careful design of the
code-vectors is the main issue. Even if we cannot claim the
selection of thresholds to be optimal in the proposed algo-
rithm, this theoretical result both motivates and justifies the
use of vector quantization in lossy compression schemes, in-
cluding our proposed BTF data compression scheme.

In this paper, a vector code-book is based on selective
elimination of input data-vectors until a final set of input
data-vectors remains as the code-book, a procedure also
known as pruning [TG74]. This idea of code-vectors
generation can be explained as:

1 Put the first input data-vector V1 in the empty code-
book

2 With each new input data-vector Vx, find the nearest
code-vector VNN in the code-book

3 If the minimum found distance between the vector Vx
and VNN is not within some threshold ε, add the input
data-vector Vx to the code-book and return its index.
Continue to 2.
Else return index of the nearest code-vector VNN .
Continue to 2.

The selection of a distance measure appropriate for input
data and the setting of the corresponding threshold ε have a
crucial influence on the performance of the vector quantizer.

4.3. Multi-Level Vector Quantization

Now we can connect all the building blocks described above
and explain our BTF compression model. As input data a Fx
is converted from original θ

′
i ,ϕ
′
i and θ

′
v,ϕ
′
v data parametriza-

tion into a novel parametrization [α,β] and [θv,ϕv] as de-
scribed in Section 4.1. An example of Fx for lacquered wood
material is depicted in the orange part of Fig. 3.

The general scheme of the proposed BTF model is
shown in Fig. 3. The resulting four-dimensional function
Fx(α,β,θv,ϕv) is decomposed along a viewing azimuth an-
gle ϕv into a set of three-dimensional functions. Similarly,
each 3D function is decomposed along a viewing elevation
angle θv into a set of two-dimensional functions. Each 2D
function describes the behavior of material reflectance along
all slices in [α,β] parametrization, where data of a single
slice can be considered as a one-dimensional function. To
enable perceptually correct matching of individual data pat-
terns and sharing of some common material features, the in-
put BTF data were converted from standard RGB space into
more perceptually uniform color space. YCrCb color space
was used for LDR BTF samples and LogLUV [Lar98] for
HDR BTF samples.

The advantage of both color models is mutual indepen-
dence of luminance and color channels that can be treated
and compressed separately. In the rest of the paper, regard-
less of the color-space that is used the luminance channel is
denoted by L and chromaticity channels by a and b.

The original 1D, 2D, 3D, and 4D luminance functions are
normalized to obtain corresponding conditional probability
functions (PDF), which are used as training vectors for our
VQ scheme. The proposed BTF model is based on BTF data
decomposition into several code-books of indices and scale
coefficients, while only the code-books on the lowest level
contain the resampled original BTF data as one-dimensional
vectors.

The vector quantization of luminance BTF data is car-
ried out separately for individual dimensions as shown in
Fig. 3. As a result of 1D PDFs quantization we obtain
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code-book P1(size S1 × nβ) of normalized 1D data slices
along illumination angle β. This code-book is indexed by the
P2(size S2×nα) code-book of 2D PDFs representing lumi-
nance values where each item contains indices and scales
cP2 of individual 1D slices along illumination angle α in
P1. Items in P2 are indexed from the auxiliary code-book
M(size SI2 × 2). M in fact only merges indices pointing
into luminance and color code-books (P2 and I2) and is in-
dexed from the code-book of 3D PDFs P3(size S3× nθv),
where for each item indices and scales cP3 corresponding
to viewing angle θv are stored. The Fx encoding is finished
by the last shared code-book P4(size S4× nϕv), which pro-
vides items corresponding to viewing angle ϕv with indices
and scales cP4 to P3.

Chromaticity channels a and b (Cr/Cb or U/V) of
BTF data are quantized in a slightly different way. The
C(size SC×2) code-book stores basic a and b color values.
Possible color variations along 1D slices are described in
items of the I1(size SI×nβ) code-book and the correspond-
ing color can be looked-up by indexing into C. Color vari-
ations for all illumination directions are obtained by means
of items of the I2(size SII×nα) code-book. Each such item
of length nα determines which color variations from I1 are
used for individual positions of angle α.

The code-books P2 and I2 are stored separately to allow
the use of different color variations for the same luminance
distribution over a hemisphere of different illumination di-
rections. This arrangement also makes it possible to save
considerably fewer P2 slices when, e.g., BTFs of similar
material structure but different color are encoded. The lu-
minance and color information is merged by means of the
auxiliary code-book M indexed from P3. M contains only
index to P2 and index to I2. The remaining P4 and P3 code-
books have the same function as in the luminance channel.

During BTF compression, individual Fx are compared
with reconstructed F̂x in P4 by means of nested indexing
through all code-books. If a similar code-vector is not found,
Fx is decomposed into a set of less dimensional slices and
the same process continues on all levels of the model either
until the similar slice is found, or the P1 or C code-books
are reached. Then the new unique data are inserted into the
code-book P1 in the form of a luminance vector of length nβ

along a slice parametrized by angle β or a chromaticity in the
code-book C. The insertion to P1 and C corresponds to stan-
dard vector quantization. During insertion the data-vector is
compared so that the luminance is normalized in both the
inserted data-vector and the data-vector in the code-book.
When the match is found, this then provides a correspond-
ing scale for upper-level code-book.

All the code-books described so far enable efficient cod-
ing of color Fx and can be shared by more BTF samples
(i.e., materials). However, individual apparent BRDFs Fx
do not provide any information about sample structure, so
for coding of an entire BTF a material-specific planar index

is needed. Such an index is obtained by VQ of individual
Fx and stored in a form of P6(nxm × nym) code-book where
nxm × nym is the spatial resolution of the m-th BTF sample.
P6 contains an index to P4 together with its scale value cP6 .

The scale values are used for scaling of the stored PDFs
to obtain correct reconstruction of 4D PDF function, i.e., Fx,
in the form of a compound function as follows

cscale = cP6 · cP4 · cP3 · cP2 (4)

k = P3(P4(P6(x,y),ϕv),θv)

FxL = cscale ·P1(P2(M(k,1),α),β)

Fx{a,b} = C(I1(I2(M(k,2),α),β),{1,2})
Fx{L,a,b} → Fx{R,G,B} .

A scheme of pixel value reconstruction and interpolation is
shown in Fig. 6.

4.4. Similarity Measure

For VQ in the proposed BTF compression model we need
a similarity measure between the input data-vector and the
stored code-vector; this is of crucial importance for the com-
pression algorithm. The data-vector corresponds to either
a 1D, 2D, 3D, or 4D slice of Fx of BTF at a given pla-
nar position. As the proposed BTF compression model can
use any similarity measure, we studied and tested several
possibilities. The first group of measures comes from com-
paring probability density functions (PDF), as BTF data
decomposed to Fx correspond to the PDF. We have been
experimenting with a number of similarity measures (i.e.
distance functions), including f-divergences [RFS03] (e.g.
Hellinger distance [Hel09] and total variation) and informa-
tion based distances (mutual information and entropy). The
second group of measures includes traditional distances for
comparing functions. It is for example Euclidean distance
corresponding to MSE, which is related to the power of a
function when viewed as a signal. As a third group of mea-
sures we tested similarity measures developed in the percep-
tion for visual image assessment. Below we describe our
final choices for this paper, but the selection of the opti-
mal similarity measure in BTF compression remains an open
problem.

4.4.1. BRDF Data Compression

As BRDF data lacks the spatial neighborhood information,
we decided to use the mean square error (MSE) as a distance
function between the original and the compressed data. The
computation of MSE, which corresponds to computing Eu-
clidean distance, has one big advantage. We can specify for
each code-book P1,P2,M,P3, and P4 the maximum MSE
that is acceptable for compression. This allows us to effec-
tively control the maximum MSE achieved for each BRDF
sample. While the maximum MSE for P4 is user specified,
the MSE thresholds for other code-books are smaller by mul-
tiplicative constants such as 0.4 and squares of multiplicative
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constants among code-vectors. This is possible thanks to the
function decomposition scheme described in Section 4.3.

The MSE for P4,P3, and M is computed directly in sRGB
color space according to the definition of MSE, but the MSE
for P2 and for P1 is computed for luminance only. The
thresholds for code-books I1,I2,C of color components of
YCrCb/LogLUV space are set to small constants; I2 thresh-
old=0.5, I1 threshold=0.2, C threshold=0.1.

4.4.2. BTF Data Compression

After experiments with several similarity measures we fi-
nally decided to analyze BTF samples using a structural
similarity index measure (SSIM) [WBSS04], which com-
pares in power to other visual assessment methods such as
a visible difference predictor [Dal93]. Another advantage of
SSIM over other standard image quality measures as MSE,
PSNR, etc. is that SSIM also takes into account both the sur-
roundings of the compared pixels and local visual masking
effects. SSIM measures the local structure similarity in their
local neighborhood of an R×R window of pixels in an im-
age (usually 11× 11, [WBSS04]). The basic idea of SSIM
is to separate the task of similarity measurement into com-
parisons of luminance, contrast, and structure. These inde-
pendent components are then combined into one similarity
function

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ
2
x +σ2

y +C2)
, (5)

whose formulation should be qualitatively consistent with
human perception of difference. Where µx,µy, σx,σy and σxy
are mean values, standard deviations, and mutual variance
of values in the local neighbourhood of compared images
X and Y . C1, C2 are specific non-zero constants. The valid
range of SSIM for a single pixel is [−1,1], with higher values
indicating higher similarity. When the local neighbourhood
is evaluated for each pixel we obtain the SSIM difference of
two images (or two sets of images) as a mean value of SSIM
values across all pixels. This mean value is understood as
MSSIM in the rest of the paper.

The MSSIM is computed for P2 and for P1 over lumi-
nance only, for P4,P3, and M in YCrCb/LogLUV color
space, for I1 and I2 and C in two chromaticity channels
of YCrCb/LogLUV color space. We tested the method of
weighting MSSIM values from three channels using the fol-
lowing weights {Y,LogL}=0.8 and {Cr,U,Cb,V}=0.1 as pro-
posed in [WLB04]. However, as the weighting method ap-
peared not to be discriminative enough for chromaticity of
color images, we propose a different method. For example
for P4 we compute MSSIM for all three channels (e.g Y, Cr,
and Cb) for all combinations of viewing and illumination
direction for the selected discretization over the hemisphere,
which yields 3×nϕv ×nϑv ×nα×nβ values. As a similarity
measure, we then compute the 98th-percentile from MSSIM
values for all three channels. The 50th-percentile is the me-
dian and the 100th-percentile is the maximum error for a set

of values, which corresponds to the worst similarity. In our
approach we allow only 2% of outliers.

The proposed approach is computationally efficient, as it
allows us to prune the vector comparisons during the search
as soon as we achieve the percentile value already found as
the current best in the code-book found. The Nth-percentile
of MSSIM values is consistently computed over all code-
books either from luminance (P2,P1), two chromaticity
channels (C,I2,I1), or all three channels (P4,P3,M).

The decomposition of PDF to levels during insertion of
new code-vectors is natural for the percentile method. For
example, when a code-vector Vx for P4 is constructed from
P3 vectors using the proposed percentile method given a
threshold εP3, it is assured that the constructed code-vector
Vx has a similarity measure smaller than εP3. Therefore there
is no need for a multiplicative factor for thresholds, as is the
case for the MSE method described in the previous section.

4.5. Scalar Quantization and Compact Indices for
Code-books

Scalar Quantization. During compression, we store the in-
dices and scale values in code-books simply by 32-bits for
an integer index and for floating point in 32-bits in IEEE-
754 format. However, the scale values are limited to a small
range of values in the majority of code-books. Therefore, af-
ter the BTF sample is compressed, we apply a simple scalar
quantization [GG92] for floating point values. First, we com-
pute minimum and maximum values stored in each code-
book separately. For simplicity and ease of decompression
we use scalar quantization to 8 bits for LDR BTF samples
for all levels, as the original data also have only 8 bits pre-
cision. For HDR BTF samples it is necessary to increase the
precision for P2 to 16 bits. The maximum relative error of
a value due to the scalar quantization is far below 1% in all
cases, typically the relative error yields values in range from
10−4 to 10−3.

Compact Indices. Similarly, the size of code-books is re-
duced. Therefore the index in a code-book Pi pointing to an-
other code-book Pi−1 of size Si−1 can be represented only
by N = dlog2 (Si−1)e bits.

The final representation of BTF data comprising scalar
quantized data and compact indices is saved to a file. Both
scalar quantization and shorter indices substantially improve
compression and the impact is shown in the results section,
as documented in Table 2. We verified experimentally that
the used scalar quantization that we used does not reduce
the visual quality for either the LDR or the HDR BTF data.

4.6. CPU / GPU Implementation

The BTF reconstruction is similar on CPU as well as on
GPU. The GPU implementation works on both GL shading
language and CUDA platforms. As GPU implementation is
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more specific we discuss it more in detail. The individual
code-books were stored in rows forming stripes of widths
nα . . .nθv in RGBA channels of four 16-bit integer textures
(indices of P6, P4, P3, P2, M, I2, I1) and two 16-bit floating
point textures (scales of P6, P4, P3, P2 and data of P1 and
C). Texture resolution depends on sizes of individual code-
books. The textures of 2048×2048 pixels were sufficient for
all tested samples. We use two indices for texture indexing
- x specifies which vertical stripe to use and y specifies the
row in the stripe. The reconstruction of each pixel was imple-
mented by chained indexing and interpolation of values from
code-books and YCrCb/LogLUV to RGB conversion in a
fragment program as shown in Fig. 6. To avoid visible seams

Figure 6: Pixel reconstruction in a fragment shader.

on the rendered objects, the correct value at each database
level for given illumination/view angle (α,β,θv,ϕv) was
computed as linear interpolation between the two closest
values m,n corresponding to discretization of individual an-
gles (Fig. 6). Due to this, the reconstruction of a single pixel
for arbitrary given illumination/view directions requires 47
reads of integer texture (1×P6, 2×P4, 4×P3, 8×M, 8×P2,
8×I2, 16×I1) and 63 reads of float texture (1×P6, 2×P4,
4×P3, 8×P2, 32×C, 16×P1). No further interpolation of il-
lumination/view directions is required. The performance of
our CPU and GPU implementation is shown in Table 1.

5. Discussion

This section discusses features of the proposed model and its
application for importance sampling of BTF data.

5.1. Vector Quantization Scheme

There are several advantages of the proposed model. The re-
construction of BTF values is computed by fast chained in-
dexing in individual code-books. The individual code-books
of luminance and color slices and their indices can be shared
by an arbitrary number of BTF samples and can therefore en-
able even higher compression. Theoretically, the more BTF
materials are compressed, the higher the compression ra-
tio that could be achieved. Data compression is carried out
on all levels of the proposed model and can be effectively
controlled by dedicated thresholds. We set the thresholds in
such a way that the low-level code-books contain most of the
code-vectors. Note that the higher the compression ratio, the

shorter is the compression time, since individual code-books
have fewer items to be evaluated. In contrast methods based
on PCA [MMK03b, VT04] or spherical harmonics [WL03],
which have predefined compression ratios, our approach can
adapt to variance in input data-vectors and can keep the rel-
ative error constant (given by the predefined thresholds ε of
the required MSE or SSIM error). Additionally, whenever a
new BTF sample arrives it can be easily processed by our
model, using some scaled variant of already stored code-
vectors if possible, and adding some of its own typical lumi-
nance and/or color characteristics. This is much more diffi-
cult, or even not feasible, with the other methods mentioned
above. Furthermore, the compressed BTF can be spatially
enlarged using any pixel or patch-based texture synthesis al-
gorithm applied to the P6 code-book.

5.1.1. Generation of Optimized Code-Books

The order of processing apparent BTFs across a BTF sam-
ple has a large impact on the final results. To guarantee that
code-books describe a perceptual variety of pixels across a
whole BTF sample, and to ensure a sufficient compression
ratio, the individual code-books are generated in a three-step
progressive sampling algorithm. First, a small set (e.g. 1%)
of apparent BTFs Fx across the whole BTF sample is ran-
domly progressively sampled from BTF data with a prede-
fined threshold and is used in the VQ scheme. The samples
are taken from a Halton pattern. Second, the threshold is in-
creased (e.g. by 2.5 times) and the same process is repeated
for a larger set of Fx (e.g. 4%), again for the whole BTF
sample. In the third step we do not modify the code-books
and compress the rest of the pixels (e.g. 95%) in any order.

Let us describe the motivation for the necessity of the
three-step sampling progressive algorithm. The sampling
strategy in the first step samples the material and creates the
representative code-books to capture the visual appearance
of the whole BTF sample with sufficient quality. In the sec-
ond step we add to the code-books the remaining relevant
visual features that have been undersampled in the first step.
We process only a small portion of the whole BTF material
in the first two steps, and we fix the code-books for the third
step. This way we guarantee that the compression ratio will
remain sufficiently high, irrespective of the thresholds that
are selected. The selection of the thresholds then influences
the visual quality that is achieved. This appears to be simi-
lar for setting the same thresholds and using different BTF
samples.

The number of generated items in individual data sets can
become so high that finding the closest code-vector can be
very slow. For BRDF data comparison we take advantage
of the fact that we are using MSE, which is a true metric,
and so we address this problem by implementing a dynamic
version of the LAESA method [MOV94] (see book [Sam06]
for other nearest neighbor search algorithms in high dimen-
sional spaces). For SSIM and 98th-percentile the efficient
search pruning is implemented as described in Section 4.4.
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5.1.2. Thresholds Setting

A common problem of all VQ algorithms is finding the op-
timal quantization thresholds that provide either a required
compression ratio or satisfy a defined quality measure. In
our case, such a measure is the computational model of per-
ceived difference between rendered images using the VQ
BTF compression scheme and images rendered using the
original BTF data. When MSE is used as similarity measure,
the maximum MSE difference allowed or required for each
generation of a code-book is specified by an user.

When SSIM is a similarity measure the situation is also
simple, because the measure directly estimates the percep-
tual difference between the original and the modeled data.
The big advantage is that no material-specific setting is re-
quired and we can again set required generic SSIM thresh-
olds for individual code-books. To summarize, the setting
of thresholds effectively controls the trade-off between the
compression ratio of the proposed VQ compression scheme
and the visual fidelity of the resulting rendered images.
There is an obvious limitation of our current approach - the
SSIM is only a mathematical model of visual fidelity given
two images. So the visual fidelity achieved is limited by ac-
curacy of SSIM. The ranking of visual fidelity can be only
approximate.

5.1.3. Mipmapping

Since rendering at different scales is important for direct
visualization of BTF data on the visible object, it is nec-
essary to address an anti-aliasing. In our model, mipmap-
ping [Wil83] can be used in the same way as for ordinary
textures. The reflectance data are averaged, and the data are
compressed from fine scale to coarse scale, each level sepa-
rately. This requires extension of the spatial index P6. Obvi-
ously, the compression ratio is decreased up to one third as
for standard texture mipmapping. The speed of decompres-
sion is also decreased as more data need to be accessed.

5.2. Importance Sampling

Importance sampling is not supported by current BTF mod-
els, but our algorithm design allows it efficiently. It is im-
plemented via a standard inverse transform method for dis-
crete PDFs [Fis96] directly from the P2 code-book, without
the necessity to compute the 2D PDF, as in for several other
BTF compression methods. The proposed parametrization
over 2D slices guarantees that for strictly positive values Fx,
and given the viewing direction ωv and a couple of random
numbers ξ1,2 ∈ [0− 1]2, we can generate the illumination
direction ωi. The implementation computes cumulative dis-
tribution functions (CDF) along 1D slices in P1 for ξ1, and
similarly CDF for across particular 2D slices in P2 for ξ2.
The probability density values have to be properly interpo-
lated because of the discretization in θv and ϕv.

In contrast to [Mat03, LRR04, EBJ∗06] our hemispheri-
cal parametrization of apparent BRDF allows us to preserve

monotonicity between the generated direction and the bivari-
ate uniform variable in the input domain, and avoids discon-
tinuities at the same time (only for the hemisphere). If for
random numbers ξ1,ξ2 the function generating direction is
ωi = DirIS(ξ1,ξ2), then it holds limδ1→0,δ2→0 |DirIS(ξ1 +

δ1,ξ2 +δ2)−DirIS(ξ1,ξ2)|= 0 for ∀ξ1,ξ2 ∈ [0,1]2. Infor-
mally, for a small change of input random variables we get
also a small change of the generated direction as a result
of importance sampling. This is important for adaptive im-
portance sampling schemes, in particular for those based on
quasi-Monte Carlo numbers, as the importance sampling al-
gorithm does not increase the intrinsic dimensionality of the
problem solved. Therefore the variance of the mean estimate
is not increased by the importance sampling algorithm.

The sampling from the proposed parametrization allows
fast sampling for a given viewing direction. This is the most
frequent importance sampling required in path-tracing and
photon mapping, when tracing the rays from the camera
towards the scene. For the other case of importance sam-
pling, given the illumination direction, we have two options.
First, we can use a standard inverse transform method for
the values of 2D PDF reconstructed over the hemisphere in
the parametrization as [α,β]. Because importance sampling
given illumination direction is much less frequently used in
rendering algorithms (for example only for shooting photons
in photon mapping), the proposed data organization is more
efficient for most rendering applications. Second, to achieve
the fast importance sampling for both cases it is possible to
compress the BTF data twice - first for the fixed viewing
direction and second for fixed illumination direction. This
approach decreases the compression ratio by half.

In addition, the proposed parametrization allows fast com-
putation of albedo [NJH∗77] for a viewing direction using

a(x,ωv) =
∫

Ω

Fx(ωi,ωv)cosθidωi , (6)

where Ω comprises hemisphere (aligned with surface nor-
mal) of applicable illumination directions.

6. Results

For our experiments we have used BTF data from the Uni-
versity of Bonn [SSK03]. Individual BTF measurements in
low dynamic range (LDR) and high dynamic range (HDR)
have spatial resolution 256× 256 and angular resolution
|ωi|×|ωv|= 81×81. Single BTF material in RGB for LDR
data (8 bits per color channel) takes up to 1.2 GBytes. HDR
data are considered to have resolution 12 bits per color chan-
nel (1.8 GBytes per material).

During BTF rendering for arbitrary viewing and illumi-
nation directions a linear interpolation between sampled Fx
points is carried out in each code-book separately. All re-
sults presented in the paper were computed for discretization
nα = 11, nβ = 11, nθv = 7, and nϕv = 16. We used this dis-
cretization to capture original BTF measurements accurately
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enough (81× 81 = 6561 < 13552 = 11× 11× 7× 16). We
report here the results without the mipmapping described in
Section 5.1.3.

The model synthesis is fast as it implements conditional
look-ups into stored code-books with additional interpola-
tion for arbitrary ωi, ωv and conversion from YCrCb to RGB
color-space (4). We use linear interpolation between two
closest values in all code-books. Implemented on a CPU,
our model yields 310,000 - 1,360,000 BTF evaluations per
second, depending on the coherence of queries. According
to our comparison, it is about 1.5 times faster than the stan-
dard single-lobe Lafortune model [LFTG97] computed sep-
arately in all RGB channels and for individual ωv [FH05].
All the tests in this section were performed on a single core
of PC with the processor 2.83GHz, Intel(R) Xeon(R) CPU,
6MBytes L2 cache, 16GBytes RAM DDR2 400MHz.

The performance of the proposed model GPU implemen-
tation was tested on two graphics cards and their results for
various 3D objects are shown in Table 1, side-by-side with
reference speed of our CPU (single core) implementation.
The implementations performs BTF decoding for a single
point light. We can obtain interactive frame-rates even for
complex 3D objects. Results suggest that performance on
GPU is dependent on surface curvature complexity as well
as on GPU texture caching algorithms.

CPU ATI Mobility NVIDIA
3D model Intel C2D RadeonT M GeForce

2GHz X1600 8800 GT
bunny (2k faces) 2.0 18 92
sphere (7k f.) 1.2 10 170
dragon (115k f.) 1.1 8 10

Table 1: BTF decompression speed in frames per second on
CPU and two GPUs for point light and 3 objects. The texture
resolution is 1024×1024, window size is 800×600 pixels.

Compression ratios achieved for individual BTF sam-
ples with corresponding compression times are shown in
columns 2–6 of Table 2 and for individual code-books in
Table 3. From the results we can conclude, that lower com-
pression ratios correspond to textile materials having higher
structural variability and complex occlusion/translucency ef-
fects, such as corduroy, impalla, proposte, and pulli.

The average compression time of a BTF sample (size
2562) using unoptimized implementation of the proposed
VQ algorithm on a single CPU core, was about 23.4 hours,
including BTF data resampling to the proposed parametriza-
tion. The numbers of data-vectors in individual code-books
depend on the variability of BTF material, as shown in Ta-
ble 3. This shows how the proposed compression model
adapts to various characteristics of different BTF samples.
When we compress 13 BTF LDR samples (except alu) to
a shared representation, the compression ratio is increased
further by a factor from 15%. When compressing 4 HDR

samples to a shared representation, the compression ratio is
increased by 40% (these figures are not reported in Table 3.).

Images rendered using our BTF model for point light and
environment lighting (Grace Cathedral, St. Peter’s Basilica
courtesy of Paul Debevec (http://www.debevec.org),
and grassplain) are depicted in Fig. 1.

The proposed BTF compression method can also be used
for BRDF when the BRDF samples are understood as appar-
ent BRDFs. We compressed 100 isotropic BRDF measured
samples (courtesy of Wojciech Matusik and MERL BRDF
database [Mat03]) with an original data size of each sam-
ple of 90×90×180×3 numbers (=16.69 MBytes of data) for
various discretizations. For example, for the discretization
nα = 91, nβ = 91, nθv = 45, and nϕv = 1 we compressed
100 BRDF samples with a negligible average MSE error to
41 MBytes (compression ratio C.R.≈1:42). For another set-
ting and nα = 45, nβ = 45, nθv = 35 with visually indis-
tinguishable error we can compress these BRDF samples to
11.1 MBytes (C.R.≈1:150). The shared data in the code-
books are luminance characteristics in the code-books P1
and P2.

We have measured the speed of the importance sampling
algorithm using the proposed model for a single process.
Given a viewing direction and the pair of random numbers
we computed illumination direction at rates of 450,000 -
1,600,000 samples per second, depending on the coherence
of queries in the spatial domain. To test the functionality
of the importance sampling algorithm we attached our BTF
compression framework to a CPU-based rendering system
that implements ray tracing and path tracing. Examples of
rendered images are shown in Fig. 7. Further, in Fig. 8(a) a
2D PDF slice of original data of a particular Fx is depicted
for fixed ωv viewing direction (yellow line on the left). A vi-
sualization of the compressed data and importance sampling
algorithm is shown in Fig. 8(b).

(a) (b)
Figure 7: Example images from software-based renderer for
Phlegmatic dragon in Cornell Box: (a) path tracing with
BTF model for 5 BTF materials (except ceiling), (b) ray cast-
ing with BTF model for 5 BTF materials. For path tracing
200 paths per pixel were computed, for both algorithms 5
shadow rays were cast towards the area light source at each
bounce of eye paths.
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(a) (b)
Figure 8: Example a 2D PDF stored in P2 for the
anisotropic apparent BRDF of wood. (a) original data (b)
compressed data with visualization of importance sampling.
Yellow line represents ωv, red line normal, green line tan-
gent, and blue-line bi-tangent.

7. Comparison with Other Methods

We have compared the proposed method in terms of data
compression with three different BTF compression tech-
niques described in Section 3: PCA of each view [SSK03]
using 5 components/view direction (PCA for C.R. 1:14);
Lafortune reflectance model [FH05] (LM with C.R. 1:16);
and PCA representing BTF clusters [MMK03b] using 7
clusters, 5 components/cluster (LPCA).

While LM and PCA do not reach the compression ratio of
our method, the LPCA has been proven to be efficient com-
pression method for BTF data. Fig. 9 shows compression of
the most challenging BTF samples (corduroy, proposte, pulli)
by means of the LPCA (left) and the proposed technique
(right), compared with image rendered from original uncom-
pressed data (middle). In average the proposed method pro-
vided subjectively comparable overall visual quality across
all tested samples, however, in average provides compres-
sion ratio more than twice higher than the LPCA method
(settings 7 clusters with 5 components per cluster - C.R.
1:275, our method on average C.R. 1:764). Let us remind
that in our compression method we have used the SSIM in-
dex, which is focused on preserving overall texture struc-
ture, but cannot be calibrated precisely in terms of visibility
thresholds as perceived by the human observer. Even less
reliable results can be obtained using MSE and CIE LAB
metrics [WB02].

In order to objectively compare visual fidelity of these two
methods we performed a simple psychological experiment
with 19 participants. The subjects with normal or corrected
vision of average age 27 years were shown 14 animated se-
quences of the rotating tablecloth objects with mapped BTF
as shown in Fig. 9, i.e., the video rendered from original
data always in the middle and from the compressed data by
the proposed method and the LPCA, side-by-side in random
order. The video for each BTF sample has been shown for
25 seconds, the whole test took between 7 to 9 minutes for
each subject. The subjects’ task was to evaluate which of the
method provides more realistic visual experience given the
reference data in the middle. For each person 14 LDR BTF
samples were shown, which gave 266 individual answers.

(a) (b) (c)
Figure 9: Example comparison of the methods for 3 BTF
samples: (top row) corduroy, (middle row) proposte, and
(bottom row) pulli. (a) LPCA based compression (b) refer-
ence uncompressed data (c) the proposed method.

As can be seen in Fig. 10 summarizing our perceptual ex-
periment the LPCA works better for materials with relatively
small spatial appearance variations across images (please re-
fer to a list of materials in Table. 2). This is typical for such
materials as alu, fabric2, foil1, foil2, and leather. Our com-
pression allows better adaptation to complex materials hav-
ing large variety of non-typical features such as corduroy, im-
palla, proposte, pulli, wood1, and wool. This is to be expected
because our approach assumes a similarity on the level of
apparent BRDFs allowing the efficient representation of ir-
regularities thanks to the multi-level decomposition of data,
while in LPCA the features are easier to represent by limited
set of basis functions. The very small p-value (p = 2.210−16)
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Figure 10: Evaluation of the psychological experiment for
19 participants and 14 LDR BTF samples. The error bars
represent twice the standard error across subjects.

of ANOVA test indicates that differences between samples’
means are highly significant. The mean evaluation is 5.15,
where 5 means undecided and 6 very low preference of the
LPCA. This means that the proposed method is compara-
ble with the tested methods in terms of visual performance.
However, it has much lower memory requirements during
sample analysis, it compresses each sample according to its
variability, it allows more materials to be compressed effi-
ciently into one data set, and it performs fast importance
sampling.

We can also compare the proposed method based on
multi-level vector quantization with standard (i.e., one-level)
vector quantization, with the results are shown in the last
column of Table 3. The standard vector quantization for the
same parametrization reaches compression ratios up to 1:80,
which is significantly lower than that achieved by the multi-
level approach proposed by our technique.

8. Conclusion and Future Work

The main contribution of this paper is a novel BTF com-
pression method based on vector quantization enabling high
compression ratios between 1 : 233−1 : 2267 (on average
1 : 764) depending on material sample variability. This is
further increased by 15% to 40% when several BTF materi-
als are compressed to a common representation. The method
can also be used for compression of multiple BRDF data.
For compression of BTF samples we directly use the SSIM
metric to control the estimated visual similarity between
the original and the compressed data. For compression of
BRDF data we can specify the maximum MSE of the com-
pressed BRDF. The proposed algorithm can therefore effi-
ciently control quality versus a compression ratio, and the
quality metric can be changed in future to a more efficient
one. Additionally, the proposed method allows fast impor-
tance sampling of BTF/BRDF data, which is a desirable fea-
ture of high-quality rendering applications exploiting path
tracing techniques. We verified this by implementation on a
CPU.

We tested the functionality of the algorithm for 18 dis-
tinct BTF materials in HDR and LDR format, and have thor-
oughly compared the achieved results with results from three

other recently published compression methods. High fidelity
of the results was also verified against true measured data
in a z-buffer based renderer for both point and environment
lighting. Additionally, we have implemented the BTF decod-
ing algorithm on the standard GPU with framerates up to 170
FPS depending on the scene complexity.

The proposed BTF framework can be elaborated in sev-
eral ways in future work. First, other similarity measures
among apparent BRDFs that better exploit known perceptual
properties of human vision can be researched. Second, when
multi-spectral BTF measurements are available, we believe
that our model can be simply extended by a more accurate
color models.
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BTF our our our our our our size4 time our PCA LM LPCA‡

No sample C.R.1 C.R.2 C.R.3 C.R.4 C.R.5 (Bytes) [h] SSIM SSIM SSIM SSIM
1 alu∗ 1:253 1:399 1:453 1:1002 – 80,460 0.39 0.850 0.929 0.882 0.941
2 corduroy 1:128 1:246 1:173 1:418 1:484 3,084,692 19.2 0.748 0.921 0.898 0.916
3 fabric1 1:117 1:181 1:188 1:362 1:419 3,558,788 29.3 0.737 0.915 0.889 0.915
4 fabric2 1:217 1:342 1:353 1:710 1:822 1,815,996 18.1 0.779 0.994 0.987 0.993
5 foil1 1:574 1:918 1:950 1:2040 1:2364 632,352 19.5 0.859 0.924 0.893 0.923
6 foil2 1:334 1:527 1:553 1:1138 1:1319 1,133,896 17.2 0.814 0.995 0.990 0.994
7 impalla 1:162 1:249 1:269 1:522 1:604 2,466,808 21.8 0.730 0.971 0.959 0.970
8 leather 1:366 1:581 1:601 1:1244 1:1441 1,036,352 17.2 0.802 0.994 0.992 0.994
9 proposte 1:236 1:418 1:349 1:806 1:934 1,599,412 18.0 0.710 0.990 0.979 0.988
10 pulli 1:87 1:131 1:141 1:264 1:306 4,873,008 27.1 0.699 0.964 0.950 0.955
11 wallpaper 1:222 1:369 1:340 1:728 1:843 1,771,420 28.8 0.776 0.955 0.940 0.963
12 wood1 1:101 1:247 1:118 1:352 1:408 3,664,060 22.3 0.866 0.827 0.789 0.811
13 wood2 1:75 1:200 1:87 1:278 1:322 4,625,772 17.2 0.886 0.954 0.892 0.957
14 wool 1:77 1:153 1:95 1:233 1:270 5,514,260 50.2 0.684 0.969 0.953 0.964
15 ceiling� 1:235 1:451 1:345 1:780 1:1102 2,653,188 20.1 0.711 – – –
16 floortile� 1:136 1:217 1:197 1:360 1:509 5,383,352 28.7 0.772 – – –
17 pinktile� 1:711 1:1028 1:1258 1:2267 1:3205 853,496 15.6 0.961 – – –
18 walkway� 1:102 1:149 1:147 1:257 1:363 7,514,860 37.4 0.884 – – –

1:230 1:378 1:368 1:764 1:924 average C.R. – 1:14 1:16 1:275
∗ sample size 64×64 only, � HDR sample
‡ computed 128×128 pixels only due to extreme computational demands
Table 2: Comparison of our method with three other methods in terms of compression ratio and MSSIMW [WBSS04] values in
YCrCb space for all tested materials. The range of MSSIM is 〈0.0,1.0〉, where value 1.0 corresponds to equal images. C.R.1 is
the compression ratio for representing code-book indices by 32-bits and floating point values by 32 bits. C.R.2 is the compression
ratio for representing indices by minimum numbers of bits and floating point values by 32 bits. C.R.3 is the compression ratio
for representing indices by 32 bits and floating point values by 8 bits except P2 where 16 bits are used for HDR samples and 8
bits for LDR samples. C.R.4 and size4 is the compression ratio and the compressed size of BTF sample for representing indices
by minimum numbers of bits and floating point values by 8 or 16 bits in the same way as for C.R.3. Compression ratio C.R.5 uses
the same representation as C.R4, but several BTF samples are compressed together for sharing luminance characteristics. The
combined compression yields improvement in compression ratio by 14% for 13 LDR materials and 41% for 4 HDR materials.
The visual quality is not changed for different representations of data in the proposed algorithm.

BTF sample size C.R. P1 P2 C I1 I2 M P3 P4
# Uncompressed code-vectors 5.0×106 4.5×105 5.5×107 5.0×106 4.5×105 4.5×105 6.5×104 4.1×103

alu 642 1:1002 1:3.7×103 1:2.7×103 1:2.8×107 1:1.0×106 1:1.1×105 1:2.6×102 1:1.2×102 1:1.2×102

# Uncompressed code-vectors 8.1×107 7.3×106 8.8×108 8.0×107 7.3×106 7.3×106 1.0×106 6.6×104

corduroy 2562 1:418 1:7.1×103 1:1.7×102 1:3.1×107 1:2.7×103 1:2.0×102 1:1.5×102 1:8.3×102 1:7.7×101

fabric1 2562 1:362 1:4.8×103 1:1.0×102 1:5.6×107 1:9.1×104 1:1.1×104 1:1.0×102 1:5.0×101 1:5.0×101

fabric2 2562 1:710 1:7.7×103 1:2.0×102 1:1.0×108 1:7.7×104 1:1.2×104 1:2.0×102 1:8.3×101 1:8.3×101

foil1 2562 1:2040 1:2.3×104 1:9.1×102 1:1.3×108 1:7.7×105 1:2.2×105 1:9.1×102 1:1.2×102 1:8.3×101

foil2 2562 1:1138 1:1.1×104 1:3.8×102 1:9.1×107 1:1.8×105 1:4.0×104 1:3.8×102 1:9.1×101 1:8.3×101

impalla 2562 1:522 1:3.4×103 1:1.7×102 1:6.2×107 1:3.6×104 1:1.5×103 1:1.6×102 1:6.2×101 1:8.3×101

leather 2562 1:1244 1:1.3×104 1:4.5×102 1:1.3×108 1:1.4×105 1:2.4×104 1:4.3×102 1:8.3×101 1:8.3×101

proposte 2562 1:806 1:1.4×104 1:2.8×102 1:8.3×107 1:1.2×104 1:7.1×102 1:2.4×102 1:8.3×101 1:8.3×101

pulli 2562 1:264 1:2.4×103 1:7.1×101 1:1.0×108 1:2.6×104 1:1.5×103 1:7.1×101 1:5.0×101 1:5.0×101

wallpaper 2562 1:728 1:9.1×103 1:2.3×102 1:4.8×107 1:1.9×104 1:1.0×103 1:2.1×102 1:8.3×101 1:8.3×101

wood1 2562 1:352 1:1.3×104 1:2.1×102 1:1.6×107 1:7.7×102 1:1.6×102 1:1.5×102 1:8.3×101 1:8.3×101

wood2 2562 1:278 1:5.3×103 1:2.0×102 1:1.5×107 1:4.5×102 1:1.4×102 1:1.4×102 1:8.3×101 1:8.3×101

wool 2562 1:233 1:7.7×103 1:1.1×102 1:4.0×107 1:1.3×103 1:8.3×101 1:7.7×101 1:5.0×101 1:5.0×101

ceiling� 2562 1:780 1:4.5×103 1:2.3×102 1:2.7×107 1:3.4×103 1:4.3×102 1:2.2×102 1:9.1×101 1:6.2×101

floortile� 2562 1:360 1:2.0×103 1:9.1×101 1:2.1×107 1:3.8×103 1:4.5×102 1:9.1×101 1:5.0×101 1:5.0×101

pinktile� 2562 1:2267 1:5.3×103 1:9.1×102 1:5.6×107 1:1.4×105 1:2.4×104 1:8.3×102 1:1.7×102 1:9.1×101

walkway� 2562 1:257 1:1.0×103 1:6.7×101 1:2.3×107 1:3.0×103 1:4.2×102 1:6.7×101 1:5.0×101 1:5.0×101

� HDR sample

Table 3: The maximum sizes of code-books and achieved compression ratios for individual code-books for the proposed method.
C.R. represents overall sample’s compression ratio. The discretization used: nα = 11, nβ = 11, nθv = 7, and nϕv = 16.
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