Fast Insertion-Based Optimization of Bounding Volume Hierarchies

Computer Graphics Forum 32(1):85-100, 2013
We present an algorithm for fast optimization of bounding volume hierarchies (BVH) for efficient ray tracing. We perform selective updates of the hierarchy driven by the cost model derived from the surface area heuristic. In each step, the algorithm updates a fraction of the hierarchy nodes to minimize the overall hierarchy cost. The updates are realized by simple operations on the tree nodes: removal, search and insertion. Our method can quickly reduce the cost of the hierarchy constructed by the traditional techniques, such as the surface area heuristic. We evaluate the properties of the proposed method on fourteen test scenes of different complexity including individual objects and architectural scenes. The results show that our method can improve a BVH initially constructed with the surface area heuristic by up to 27% and a BVH constructed with the spatial median split by up to 88%.